实际上,我们观察到的输出 {1:6, 3:6, 5:6}
并不是直接由给出的字典推导式 {x: y for x in [1, 3, 5] for y in [2, 4, 6]}
产生的。Python 的字典推导式在处理嵌套循环时,并不是简单地将每个 x
与每个 y
配对成键值对,而是会遍历所有的 y
值对于每个 x
值,并且因为字典的键是唯一的,所以最终每个 x
只会保留与最后一个 y
值的配对。
在这个例子中,对于每个 x
(1, 3, 5),字典推导式会遍历列表 [2, 4, 6]
中的所有 y
值,但由于字典键的唯一性,每个 x
最终只会与列表 [2, 4, 6]
中的最后一个元素(即 6)关联。
为了更清楚地看到发生了什么,我们可以稍微修改一下代码,打印出推导过程中的一些步骤:
# 演示字典推导式的过程
results = []
for x in [1, 3, 5]:
for y in [2, 4, 6]:
# 这里我们只是将每个可能的键值对添加到列表中,而不是构建字典
results.append((x, y))
# 打印结果列表,以查看所有可能的键值对
print(results)
# 输出: [(1, 2), (1, 4), (1, 6), (3, 2), (3, 4), (3, 6), (5, 2), (5, 4), (5, 6)]
# 现在,如果我们尝试将这些键值对放入字典中,我们会看到只有最后一个 `y` 值被保留
my_dict = {x: y for x in [1, 3, 5] for y in [2, 4, 6]}
print(my_dict)
# 输出: {1: 6, 3: 6, 5: 6}
如上所见,虽然我们在推导过程中考虑了所有的 (x, y)
对,但由于字典键的唯一性,每个 x
最终只与最后一个 y
值(即 6)关联。
如果想要将每个 x
与列表 [2, 4, 6]
中的所有 y
值都关联起来(但这在普通字典中是不可能的,因为键是唯一的),可能需要考虑使用其他数据结构,如列表的列表、字典的列表、或更复杂的嵌套字典等。