次短路 + 统计路径数

该博客详细介绍了如何利用Dijkstra算法解决图中找到最短路径和次短路径的问题。代码实现了一个优先队列优化的Dijkstra算法,并通过实例展示了在有向图中更新最短路径和次短路径计数的过程。文章重点讨论了四种不同的路径更新情况,并给出了完整的C++代码实现。
摘要由CSDN通过智能技术生成

HDU1688

题目:统计最短路,及次短路的路径数

对于每次更新:

1.新路径比最短路径长度要小,那么最短路和次短路的长度和次数都要更新。
2.新路径等于最短路的长度,那么只需要更新最短路的条数。
3.新路径比最短路要长但是比次短路要短,那么需要更新次短路的长度和条数。
4.新路径等于次短路径的长度,那么只需要更新次短路径的条数。

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const ll inf=1e9;
const ll mod=1e9+7;
const int maxn=1e6;
const int N=3005;
int head[maxn],to[maxn],nex[maxn],kp[N],vis[N][3],x,y,z,t,S,T,n,m,k;
int dis[N][3],w[maxn],dp[N][3];
struct node{
    ll u,num,f;
    bool operator < (const node &x) const{
        return u>x.u;
    }
};
void add(int a,int b,int c){
	to[++k]=b;
	nex[k]=head[a];
	head[a]=k;
	w[k]=c;
}
void dij(int s){
    priority_queue<node>p;
    memset(dp,0,sizeof(dp));
    memset(vis,0,sizeof(vis));
    for(int i=1;i<=n;i++)
    dis[i][0]=dis[i][1]=inf;
    dis[s][1]=0;dp[s][1]=1;
    p.push((node){0,s,1});
    while(!p.empty()){
    	node tmp=p.top();p.pop();
    	int now=tmp.num,f=tmp.f;
    	if(vis[now][f])continue;
    	vis[now][f]=1;
		for(int i=head[now];i;i=nex[i]){
			int y=to[i];
			if(dis[y][1]>dis[now][f]+w[i]){//1表示最短路,2表示次短路 
		        dis[y][2]=dis[y][1];
		        dp[y][2]=dp[y][1];
		        p.push((node){dis[y][2],y,2});	
				dis[y][1]=dis[now][f]+w[i];
				dp[y][1]=dp[now][f];
				p.push((node){dis[y][1],y,1});
			}
			else if(dis[y][1]==dis[now][f]+w[i]){
				dp[y][1]+=dp[now][f];
			}
			else if(dis[y][2]>dis[now][f]+w[i]){
				dis[y][2]=dis[now][f]+w[i];
				dp[y][2]=dp[now][f];
				p.push((node){dis[y][2],y,2});
			}
			else if(dis[y][2]==dis[now][f]+w[i]){
				dp[y][2]+=dp[now][f];
			}
		}
	}
}
int main(){
	scanf("%d",&t);
    while(t--){
    	scanf("%d%d",&n,&m);
        k=0;
        memset(head,0,sizeof(head));
        for(int i=1;i<=m;i++){
            scanf("%d%d%d",&x,&y,&z);
            add(x,y,z);
        }
        scanf("%d%d",&S,&T);
        dij(S);
        int ans=dp[T][1];
		if(dis[T][2]-1==dis[T][1])ans+=dp[T][2];
		printf("%d\n",ans);
    }
} 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值