2021浙江 D. Shortest Path Query

该博客介绍了如何解决给定一个特殊条件的图中两点间的最短路径问题。通过将数字转化为二进制并构建完全二叉树,博主展示了如何以O(nlogn*logn)的时间复杂度预处理每个节点到其子树最短距离,并使用动态规划求解任意两点间的最短路径。此外,还提供了具体的C++代码实现。
摘要由CSDN通过智能技术生成

菜哭了:(

2021浙江 D. Shortest Path Query

题意:
给定一个图,图中每一条边的两点符合以下条件:两点编号二进制表示下一个位另一个的前缀。给出q次询问,每次给出u,v,询问u和v之间的最短路。

思路:
把每个数字转化成二进制,以1为根节点建立一颗tried树,
在这里插入图片描述
可以发现,其为一棵完全二叉树。对于任意两点S,T 的最短距离是S,T到某一个S和T的祖先的距离之和,因为最多只有20个祖先,暴力遍历即可。首先预处理以每个为根节点,其子树中所有节点到其最短距离,因为平均下来,每个节点大概有 l o g n logn logn个子树节点,大概每次dij的时间复杂度为 O ( l o g n ∗ l o g n ) O(logn*logn) O(lognlogn),总的时间复杂度为 O ( n l o g n ∗ l o g n ) O(nlogn*logn) O(nlognlogn)

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn=4e5+5;
const ll inf=1e15;
typedef pair<ll,ll>P; 
ll n,m,k,q,to[maxn],w[maxn],head[maxn],nex[maxn],dis[maxn][20],d[maxn],vis[maxn],vis2[maxn];
void add(ll x,ll y,ll c){
	to[++k]=y;
	w[k]=c;
	nex[k]=head[x];
	head[x]=k;
}
int cal(int root,int x){
	int ans=0;
	while(root<x){
		ans++;
		x>>=1;
	}
	return ans;
}
void dij(int root){
	priority_queue<P,vector<P>,greater<P>>p;
	p.push({0,root});
	d[root]=0,vis2[root]=root;
	while(!p.empty()){
		auto now=p.top();//va=p.top().first;
		int x=now.second;
		p.pop();
		if(vis[x]==root)continue;
		vis[x]=root;
		dis[x][cal(root,x)]=d[x];
		//dis[x][cal(root,x)]=val;
		for(int i=head[x];i;i=nex[i]){
			int y=to[i];
			if(y<root)continue;
			if(vis2[y]!=root){
				vis2[y]=root;
				d[y]=inf;
			}
			if(d[y]>d[x]+w[i]){
				d[y]=d[x]+w[i];
				p.push({d[y],y});
			}
		}
	}
}
int LCA(int s,int t){
	while(s!=t){
		if(s>t)s>>=1;
		else t>>=1;
    }
    return s;
}
int main(){
	 memset(dis, 0x3f, sizeof dis);
	scanf("%lld%lld",&n,&m);
	for(ll i=1,a,b,c;i<=m;i++){
		scanf("%lld%lld%lld",&a,&b,&c);
		add(a,b,c),add(b,a,c);
	}
	 for(int i = 1; i <= n; i++){
        dis[i][0] = 0;
    }
	for(int i=1;i<=n;i++){
		dij(i);
	}
	scanf("%lld",&q);
	while(q--){
		ll s,t,ans=inf;
		scanf("%lld%lld",&s,&t);
		int lca=LCA(s,t);
		int ls=cal(lca,s),lt=cal(lca,t);
		while(lca){
			ans=min(ans,dis[s][ls]+dis[t][lt]);
			ls++,lt++;
			lca>>=1;
		}
		if(ans==inf)printf("-1\n");
		else printf("%lld\n",ans);
	}
} 




评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值