菜哭了:(
2021浙江 D. Shortest Path Query
题意:
给定一个图,图中每一条边的两点符合以下条件:两点编号二进制表示下一个位另一个的前缀。给出q次询问,每次给出u,v,询问u和v之间的最短路。
思路:
把每个数字转化成二进制,以1为根节点建立一颗tried树,
可以发现,其为一棵完全二叉树。对于任意两点S,T 的最短距离是S,T到某一个S和T的祖先的距离之和,因为最多只有20个祖先,暴力遍历即可。首先预处理以每个为根节点,其子树中所有节点到其最短距离,因为平均下来,每个节点大概有
l
o
g
n
logn
logn个子树节点,大概每次dij的时间复杂度为
O
(
l
o
g
n
∗
l
o
g
n
)
O(logn*logn)
O(logn∗logn),总的时间复杂度为
O
(
n
l
o
g
n
∗
l
o
g
n
)
O(nlogn*logn)
O(nlogn∗logn)
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn=4e5+5;
const ll inf=1e15;
typedef pair<ll,ll>P;
ll n,m,k,q,to[maxn],w[maxn],head[maxn],nex[maxn],dis[maxn][20],d[maxn],vis[maxn],vis2[maxn];
void add(ll x,ll y,ll c){
to[++k]=y;
w[k]=c;
nex[k]=head[x];
head[x]=k;
}
int cal(int root,int x){
int ans=0;
while(root<x){
ans++;
x>>=1;
}
return ans;
}
void dij(int root){
priority_queue<P,vector<P>,greater<P>>p;
p.push({0,root});
d[root]=0,vis2[root]=root;
while(!p.empty()){
auto now=p.top();//va=p.top().first;
int x=now.second;
p.pop();
if(vis[x]==root)continue;
vis[x]=root;
dis[x][cal(root,x)]=d[x];
//dis[x][cal(root,x)]=val;
for(int i=head[x];i;i=nex[i]){
int y=to[i];
if(y<root)continue;
if(vis2[y]!=root){
vis2[y]=root;
d[y]=inf;
}
if(d[y]>d[x]+w[i]){
d[y]=d[x]+w[i];
p.push({d[y],y});
}
}
}
}
int LCA(int s,int t){
while(s!=t){
if(s>t)s>>=1;
else t>>=1;
}
return s;
}
int main(){
memset(dis, 0x3f, sizeof dis);
scanf("%lld%lld",&n,&m);
for(ll i=1,a,b,c;i<=m;i++){
scanf("%lld%lld%lld",&a,&b,&c);
add(a,b,c),add(b,a,c);
}
for(int i = 1; i <= n; i++){
dis[i][0] = 0;
}
for(int i=1;i<=n;i++){
dij(i);
}
scanf("%lld",&q);
while(q--){
ll s,t,ans=inf;
scanf("%lld%lld",&s,&t);
int lca=LCA(s,t);
int ls=cal(lca,s),lt=cal(lca,t);
while(lca){
ans=min(ans,dis[s][ls]+dis[t][lt]);
ls++,lt++;
lca>>=1;
}
if(ans==inf)printf("-1\n");
else printf("%lld\n",ans);
}
}