前言:
- Redis是一个开源的使用ANSI C语言编写、支持网络、可基于内存亦可持久化的日志型、Key-Value数据库,并提供多种语言的API。从2010年3月15日起,Redis的开发工作由VMware主持
- redis是一个key-value存储系统。和Memcached类似,它支持存储的value类型相对更多,包括string(字符串)、list(链表)、set(集合)和zset(有序集合)。这些数据类型都支持push/pop、add/remove及取交集并集和差集及更丰富的操作,而且这些操作都是原子性的。在此基础上,redis支持各种不同方式的排序。与memcached一样,为了保证效率,数据都是缓存在内存中。区别的是redis会周期性的把更新的数据写入磁盘或者把修改操作写入追加的记录文件,并且在此基础上实现了master-slave(主从)同步
- Redis 是一个高性能的key-value数据库。 redis的出现,很大程度补偿了memcached这类keyvalue存储的不足,在部 分场合可以对关系数据库起到很好的补充作用。它提供了Python,Ruby,Erlang,PHP客户端,使用很方便
文章目录
一、概述
1.关系数据库与非关系型数据库
1)关系数据库
- 关系型数据库是一个结构化的数据库, 创建在关系模型基础上, 一般面向于记录。 它借助于集合代数等数学概念和方法来处理数据库中的数据
- 关系模型就是指二维表格模型,因而一个关系型数据库就是由二维表及其之间的联系组成的一个数据组织
- 现实世界中, 各种实体与实体之间的各种联系都可以用关系模型来表示。 SQL 语句(标准数据查询语言) 就是一种基于关系型数据库的语言, 用于执行对关系型数据库中数据的检索和操作
- 主流的关系型数据库包括 Oracle、 MySQL、 SQL Server、 Microsoft Access、 DB2 等等
2)非关系型数据库
- NoSQL(NoSQL = Not Only SQL ), 意思是“不仅仅是 SQL”, 是非关系型数据库的总称
- 主流的 NoSQL 数据库有 Redis、 MongBD、 Hbase、 CouhDB 等等
- 以上这些数据库, 他们的存储方式、 存储结构以及使用的场景都是完全不同的。 所以我们认为它是一个非关系型数据库的集合, 而不是像关系型数据库一样, 是一个统称
- 换言之, 除了主流的关系型数据库以外的数据库, 都认为是非关系型的。 NoSQL 数据库凭借着其非关系型、 分布式、 开源和横向扩
展等优势, 被认为是下一代数据库产品。
3)非关系型数据库产生背景
- 关系型数据库已经诞生很久了, 而且我们一直在使用, 没有什么问题。 面对这样的情况,为什么还会产生 NoSQL? 那么, 下面我们就来介绍一下 NoSQL 产生的背景
- 随着 Web2.0 网站的兴起, 关系型数据库在应对 Web2.0 网站, 特别是海量数据和高并发的 SNS(Social Networking Services, 即社交网络服务) 类型的 Web2.0 纯动态网站时,暴露出很多难以解决的问题。 例如三高问题
3.1 High performance——对数据库高并发读写需求
- Web2.0 网站会根据用户的个性化信息来实时生成动态页面和提供动态信息, 因此, 无法使用动态页面静态化技术。 所以数据库的并发负载非常高, 一般会达到 10000 次/s 以上的读写请求
- 关系型数据库对于上万次的查询请求还是可以勉强支撑的。 当出现上万次的写数据请求, 硬盘 IO 就已经无法承受了。 对于普通的 BBS 网站, 往往也会存在高并发的写数据请求
3.2 Huge Storage——对海量数据高效存储与访问需求
- 类似于 Facebook、 Friendfeed 这样的 SNS 网站, 每天会产生大量的用户动态信息
- 如Friendfeed,一个月就会产生 2.5 亿条用户动态信息, 对于关系型数据库来说, 在一个包含2.5 亿条记录的表中执行 SQL 查询, 效率是非常低的
3.3 High Scalability && High Availability——对数据库高可扩展性与高可用性需求
- 在 Web 架构中, 数据库是最难进行横向扩展的
- 当应用系统的用户量与访问量与日俱增时, 数据库是没办法像 Web 服务一样, 简单地通过添加硬件和服务器节点来扩展其性能和负载能力的
- 尤其对于一些需要 24 小时对外提供服务的网站来说, 数据库的升级与扩展往往伴随着停机维护与数据迁移, 其工作量是非常庞大的
- 关系型数据库和非关系型数据库都有各自的特点与应用场景, 两者的紧密结合将会给web2.0 的数据库发展带来新的思路。 让关系数据库关注在关系上, 非关系型数据库关注在存储上
- 例如, 在读写分离的 MySQL 数据库环境中,可以把经常访问的数据存储在非关系型数据库中, 提升访问速度
2.Redis基础
1.Redis简介
- Redis(RemoteDictionaryServer, 远程字典型)是一个开源的、使用 C 语言编写的 NoSQL数据库
- Redis 基于内存运行并支持持久化, 采用 key-value(键值对) 的存储形式, 是目前分布式架构中不可或缺的一环
- Redis 服务器程序是单进程模型,也就是在一台服务器上可以同时启动多个 Redis 进程,而 Redis 的实际处理速度则是完全依靠于主进程的执行效率
- 若在服务器上只运行一个Redis 进程,当多个客户端同时访问时, 服务器的处理能力是会有一定程度的下降; 若在同一台服务器上开启多个 Redis 进程, Redis 会提高并发处理能力的同时会给服务器的 CPU 造
成很大压力。 也就是说在实际生产环境中, 需要根据实际的需求来决定开启多少个 Redis进程 - 若对高并发要求更高一些, 可能会考虑在同一台服务器上开启多个进程; 若 CPU 资源比较紧张, 采用单进程即可
2.优点
- 具有极高的数据读写速度, 数据读取的速度最高可达到 110000 次/s, 数据写入速度最高可达到 81000 次/s
- 支持丰富的数据类型, 不仅仅支持简单的 key-value 类型的数据, 还支持 Strings,Lists, Hashes, Sets 及 Ordered Sets 等数据类型操作
- 支持数据的持久化, 可以将内存中的数据保存在磁盘中, 重启的时候可以再次加载进行使用
- 原子性, Redis 所有操作都是原子性的
- 支持数据备份, 即 master-salve 模式的数据备份
Redis 作为基于内存运行的数据库, 缓存是其最常应用的场景之一, 除此之外, Redis常见应用场景还包括: 获取最新 N 个数据的操作、 排行榜类应用、 计数器应用、 存储关系、实时分析系统、 日志记录
二、部署
- Redis 的安装相对于其他服务比较简单,首先需要到 Redis 官网(https://www.redis.io)下载相应的源码软件包, 然后上传至 Linux 系统的服务器中进行解压
- 通常情况下在 Linux 系统中进行源码编译安装, 需要先执行./configure 进行环境检查与配置, 从而生成 Makefile 文件, 再执行 make && make install 命令进行编译安装。 而Redis 源码包中直接提供了 Makefile 文件, 所以在解压完软件包后, 可直接进入解压后的软件包目录, 执行 make 与 make install 命令进行安装
- make install 只是安装了二进制文件到系统中, 并没有启动脚本和配置文件。 软件包中默认提供了一个 install_server.sh 脚本文件, 通过该脚本文件可以设置 Redis 服务所需要的相关配置文件。 当脚本运行完毕, Redis 服务就已经启动, 默认侦听端口为 6379
1.环境优化
- 关闭防火墙及安全功能
[root@promote ~]# systemctl stop firewalld.service
[root@promote ~]# setenforce 0
- 安装依赖包
[root@promote ~]# yum install gcc gcc-c++ make -y
2.部署编译
- 将准备好的压缩包解压并编译
[root@promote opt]# ls
redis-5.0.4.tar.gz rh
[root@promote opt]# tar zxvf redis-5.0.4.tar.gz
[root@promote opt]# cd redis-5.0.4/
[root@promote redis-5.0.4]# make
[root@promote redis-5.0.4]# make PREFIX=/usr/local/redis/ install
[root@promote redis-5.0.4]# cd /opt/redis-5.0.4/utils/
[root@promote utils]# ./install_server.sh //一直回车
Welcome to the redis service installer
This script will help you easily set up a running redis server
Please select the redis port for this instance: [6379]
Selecting default: 6379
Please select the redis config file name [/etc/redis/6379.conf]
Selected default - /etc/redis/6379.conf
Please select the redis log file name [/var/log/redis_6379.log]
Selected default - /var/log/redis_6379.log
Please select the data directory for this instance [/var/lib/redis/6379]
Selected default - /var/lib/redis/6379
Please select the redis executable path [] /usr/local/redis/bin/redis-server //拓展路径 自行添加
Selected config:
Port : 6379
Config file : /etc/redis/6379.conf //配置文件路径
Log file : /var/log/redis_6379.log //日志文件路径
Data dir : /var/lib/redis/6379 //数据文件路径
Executable : /usr/local/redis/bin/redis-server //可执行文件路径
Cli Executable : /usr/local/redis/bin/redis-cli //客户端命令工具
Is this ok? Then press ENTER to go on or Ctrl-C to abort.
Copied /tmp/6379.conf => /etc/init.d/redis_6379
Installing service...
Successfully added to chkconfig!
Successfully added to runlevels 345!
Starting Redis server...
Installation successful!
[root@promote utils]# ls /etc/redis/ //配置文件
6379.conf
[root@promote utils]# ln -s /usr/local/redis/bin/* /usr/local/bin //建立软连接
[root@promote utils]# netstat -ntap | grep 6379
tcp 0 0 127.0.0.1:6379 0.0.0.0:* LISTEN 12596/redis-server
- 安装完成, 可通过 Redis 的服务控制脚本/etc/init.d/redis_6379 来对 Redis 服务进行控制, 如停止 Redis 服务、 启动 Redis 服务、 重启 Redis 服务、 查看 Redis 运行状态
[root@promote utils]# /etc/init.d/redis_6379 stop ####停止 Redis 服务
Stopping ...
Waiting for Redis to shutdown ...
Redis stopped
[root@promote utils]# /etc/init.d/redis_6379 start ####启动 Redis 服务
Starting Redis server...
[root@promote utils]# /etc/init.d/redis_6379 restart ####重启 Redis 服务
Stopping ...
Redis stopped
Starting Redis server...
[root@promote utils]# /etc/init.d/redis_6379 status ####查看 Redis 运行状态
Redis is running (12896)
- 登录
[root@promote utils]# redis-cli
127.0.0.1:6379>
3.配置参数
- Redis 主配置文件为/etc/redis/6379.conf, 由注释行与设置行两部分组成。 与大多数Linux 配置文件一样, 注释性的文字以“#” 开始, 包含了对相关配置内容进行的说明和解释
- 除了注释行与空行以外的内容即为设置行。 可根据生产环境的需求调整相关参数
[root@promote utils]# vi /etc/redis/6379.conf
bind 127.0.0.1 192.168.100.41 //需要更改 加本端的IP地址
port 6379 //默认不需要更改 端口
daemonize yes //默认不需要更改 启用守护进程
pidfile /var/run/redis_6379.pid //默认不需要更改 指定 PID 文件
loglevel notice //默认不需要更改 日志级别
logfile /var/log/redis_6379.log //默认不需要更改 指定日志文件
[root@promote utils]# /etc/init.d/redis_6379 restart
Stopping ...
Redis stopped
Starting Redis server...
- 除了上述配置参数外, Redis 主配置文件中还包含很多其它的配置参数
参数 作用
timeout 300 当客户端闲置多长时间后关闭连接, 如果指定为 0, 表示关闭该功能
dbfilename dump.rdb 指定本地数据库文件名, 默认值为 dump.rdb
dir /var/lib/redis/6379 指定本地数据库存放目录
maxclients 10000 设置同一时间最大客户端连接数, 默认为 10000, Redis可以同时打开
的客户端连接数为 Redis 进程可以打开的最大文件描述符数, 如果设置
maxclients 0, 表示不限制。 当客户端连接数到达限制时, Redis 会关
闭新的连接并向客户端返回 max number of clients reached 错误信息
rdbcompression yes 指定存储至本地数据库时是否压缩数据, 默认为 yes,Redis 采用 LZF 压缩,
如果为了节省 CPU 资源, 可以关闭该选项, 但会导致数据库文件变的巨大
slaveof <masterip><masterport> 设置当本机为 slav 从服务器时, 设置 maste 服务的 IP地址及端口, 在 Redis
启动时, 它会自动从 master 进行数据同步
masterauth <master-password> 当 master 服务设置了密码保护时,slav 服务连接 master的密码
requirepass foobared 设置 Redis 连接密码, 如果配置了连接密码, 客户端在连接 Redis 时需要
通过 AUTH <password>命令提供密码, 默认关闭
maxmemory <bytes> 指定 Redis 最大内存限制, Redis 在启动时会把数据加载到内存中, 达到
最大内存后, Redis 会先尝试清除已到期或即将到期的 Key, 当此方法处
理后, 仍然到达最大内存设置,将无法再进行写入操作,但仍然可以进行
读取操作。Redis 新的 vm 机制, 会把 Key 存放内存, Value 会存放在swap 区
appendonly no 指定是否在每次更新操作后进行日志记录, Redis 在默认情况下是异步的把
数据写入磁盘, 如果不开启, 可能会在断电时导致一段时间内的数据丢失。
因为 redis 本身同步数据文件是按上面 save 条件来同步的, 所以有的数据
会在一段时间内只存在于内存中。 默认为 no
appendfilename
appendonly.aof 指定更新日志文件名, 默认为 appendonly.aof
appendfsync everysec 指定更新日志条件, 共有 3 个可选值:
no: 表示等操作系统进行数据缓存同步到磁盘(快)
always: 表示每次更新操作后手动调用 fsync()将数据写到磁盘(慢, 安全)
everysec: 表示每秒同步一次(折衷, 默认值)
activerehashing yes 指定是否激活重置哈希, 默认为开启
include /path/to/local.conf 指定包含其它的配置文件, 可以在同一主机上多个 Redis实例之间使用同一份配置文件 而同时各个实例又拥有自己的特定配置文件
三、命令
4.Redis命令工具
- Redis 软件提供了多个命令工具, 当 Redis 安装时, 所包含的软件工具会同时被安装到系统中, 在系统中可以直接使用
redis-server: 用于启动 Redis 的工具
redis-benchmark: 用于检测 Redis 在本机的运行效率
redis-check-aof: 修复 AOF 持久化文件
redis-check-rdb: 修复 RDB 持久化文件
redis-cli: 是 Redis 命令行工具
redis-setinel: 是 redis-server 文件的软链接
1)redis-cli 命令行工具
- Redis 数据库系统也是一个典型的 C/S(客户端/服务器端) 架构的应用, 要访问 Redis数据库需要使用专门的客户端软件
- Redis 服务的客户端软件就是其自带的 redis-cli 命令行工具
- 使用 redis-cli 连接指定数据库, 连接成功过后会进入提示符为“远程主机 IP 地址: 端口号>” 的数据库操作环境
- 用户可以输入各种操作语句对数据库进行管理。 如执行ping 命令可以检测 redis 服务是否启动
[root@promote utils]# redis-cli //连接本机 Redis 数据库
127.0.0.1:6379> ping //检测 redis 服务是否启动
PONG
- 在进行数据库连接操作时, 可以通过选项来指定远程主机上的 Redis 数据库, 命令语法为 redis-cli -h host -p port -a password
- 其中, -h 指定远程主机、 -p 指定 Redis 服务的端口号、 -a 指定密码。 若不添加任何选项表示, 连接本机上的 Redis 数据库; 若未设置数据库密码可以省略-a 选项
- 若要退出数据库操作环境, 执行“exit” 或“quit” 命令即可返还原来的 Shell 环境
[root@promote lib]# redis-cli -h 192.168.170.136 -p 6379
192.168.170.136:6379> info
# Server
redis_version:5.0.4
redis_git_sha1:00000000
redis_git_dirty:0
redis_build_id:50e3c45f28988fc2
redis_mode:standalone
os:Linux 3.10.0-1062.el7.x86_64 x86_64
arch_bits:64
multiplexing_api:epoll
atomicvar_api:atomic-builtin
gcc_version:4.8.5
process_id:13391
run_id:50c197b1eabea2ca7101698bd038b8f431a72108
tcp_port:6379
uptime_in_seconds:7915
uptime_in_days:0
hz:10
configured_hz:10
lru_clock:10861873
executable:/usr/local/redis/bin/redis-server
config_file:/etc/redis/6379.conf
。。。省略部分内容
192.168.170.136:6379> exit
- 在数据库操作环境中, 使用 help 命令可以获取命令类型的帮助。 其中。 有三种获取命令帮助的方式
help @<group>: //获取<group>中的命令列表
help <command>: //获取某个命令的帮助
help <tab>: //获取可能帮助的主题列表
- 例如:
[root@promote lib]# redis-cli
127.0.0.1:6379> help @list //查看所有与 List 数据类型的相关命令
127.0.0.1:6379>help set //查看 set 命令的命令帮助
2)redis-benchmark 测试工具
- redis-benchmark 是官方自带的 Redis 性能测试工具, 可以有效的测试 Redis 服务的性能
基本的测试语法为 redis-benchmark [option] [option value]
-h: 指定服务器主机名。
-p: 指定服务器端口。
-s: 指定服务器 socket。
-c: 指定并发连接数。
-n: 指定请求数。
-d: 以字节的形式指定 SET/GET 值的数据大小。
-k: 1=keep alive 0=reconnect 。
-r: SET/GET/INCR 使用随机 key, SADD 使用随机值。
-P: 通过管道传输<numreq>请求。
-q: 强制退出 redis。 仅显示 query/sec 值。
--csv: 以 CSV 格式输出。
-l: 生成循环, 永久执行测试。
-t: 仅运行以逗号分隔的测试命令列表。
-I: Idle 模式。 仅打开 N 个 idle 连接并等待。
- 结合上述选项, 可以针对某台 Redis 服务器进行性能检测, 如执行 redis-benchmark -h192.168.170.136 -p 6379 -c 100 -n 100000 命令即可向 IP 地址为 192.168.170.136、 端口为 6379 的 Redis 服务器发送 100 个并发连接与 100000 个请求测试性能
[root@promote lib]# redis-benchmark -h 192.168.170.136 -p 6379 -c 100 -n 100000
。。。省略
100.00% <= 14 milliseconds
17018.38 requests per second
====== MSET (10 keys) ======
100000 requests completed in 0.73 seconds
100 parallel clients
3 bytes payload
keep alive: 1
99.62% <= 1 milliseconds
100.00% <= 1 milliseconds
136986.30 requests per second
- 执行 redis-benchmark -h 192.168.170.136 -p 6379 -q -d 100 命令的作用是测试存取大小为 100 字节的数据包的性能
[root@promote lib]# redis-benchmark -h 192.168.170.136 -p 6379 -q -d 100
PING_INLINE: 136612.02 requests per second
PING_BULK: 135869.56 requests per second
SET: 134589.50 requests per second
GET: 134408.59 requests per second
INCR: 140646.97 requests per second
LPUSH: 143266.47 requests per second
RPUSH: 134770.89 requests per second
LPOP: 134770.89 requests per second
RPOP: 134589.50 requests per second
SADD: 137931.03 requests per second
HSET: 135501.36 requests per second
SPOP: 127877.23 requests per second
LPUSH (needed to benchmark LRANGE): 131578.95 requests per second
LRANGE_100 (first 100 elements): 60204.70 requests per second
LRANGE_300 (first 300 elements): 27708.51 requests per second
LRANGE_500 (first 450 elements): 18583.91 requests per second
LRANGE_600 (first 600 elements): 14158.29 requests per second
MSET (10 keys): 145137.88 requests per second
- 还可以测试某些操作的性能, 例如执行 redis-benchmark -t set,lpush -n 100000 -q命令的作用是测试本机上 Redis 服务在进行 set 与 lpush 操作时的性能
[root@promote lib]# redis-benchmark -t set,lpush -n 100000 -q
SET: 134952.77 requests per second
LPUSH: 139082.06 requests per second
5.Redis数据库常用命令
- 前面提到, Redis 数据库采用 key-value(键值对) 的数据存储形式。 所使用的命令是set 与 get 命令
set: 存放数据, 基本的命令格式为 set key value。
get: 获取数据, 基本的命令格式为 get key。
- 例如在 Redis 的命令行模式下执行” set teacher zhanglong”, 表示在当前数据库下存放一个 key 为 teacher, value 为 zhangsan 的数据, 而执行“getteacher“命令即可查看刚才存放的数据
[root@promote lib]# redis-cli
127.0.0.1:6379> set teacher zhangsan
OK
127.0.0.1:6379> get teacher
"zhangsan"
1)key相关命令
- 在 Redis 数据库中, 与 key 相关的命令主要包含以下几种
1.1 keys
- 使用 keys 命令可以取符合规则的键值列表, 通常情况可以结合、 ? 等选项来使用*
[root@promote lib]# redis-cli
127.0.0.1:6379>set k1 1
OK
127.0.0.1:6379>set k2 2
OK
127.0.0.1:6379>set k3 3
OK
127.0.0.1:6379>set v1 4
OK
127.0.0.1:6379>set v5 5
OK
127.0.0.1:6379>KEYS * //查看当前数据库中所有键
1) "teacher"
2) "v1"
3) "k3"
4) "k1"
5) "k2"
6) "v5"
127.0.0.1:6379>set v22 5
OK
127.0.0.1:6379>KEYS v* //查看当前数据库中以 v 开头的数据
1) "v1"
2) "v22"
3) "v5"
127.0.0.1:6379>KEYS v? //查看当前数据库中以 v 开头后面包含任意一位的数据
1) "v1"
2) "v5"
127.0.0.1:6379>KEYS v?? //查看当前数据库中以 v 开头 v 开头后面包含任意两位的数据
1) "v22"
1.2 exists
- exists 命令可以判断键值是否存在
127.0.0.1:6379>exists teacher //判断 teacher 键是否存在
(integer) 1 //表示 teacher 键是存在
127.0.0.1:6379>exists tea
(integer) 0 //表示 tea 键不存在
1.3 del
- del 命令可以删除当前数据库的指定 key
127.0.0.1:6379>keys *
1) "teacher"
2) "v1"
3) "v22
4) "k3"
5) "k1"
6) "k2"
7) "v5"
127.0.0.1:6379> del v5
(integer) 1
127.0.0.1:6379>get v5
(nil)
1.4 type
- 使用 type 命令可以获取 key 对应的 value 值类型
127.0.0.1:6379>type k1
string
1.5 rename
- rename 命令是对已有 key 进行重命名, 其命令格式为: rename 源 key 目标 key
- 使用rename 命令进行重命名时, 无论目标 key 是否存在都进行重命名, 且源 key 的值会覆盖目标 key 的值
- 在实际使用过程中, 建议先用 exists 命令查看目标 key 是否存在, 然后再决定是否执行 rename 命令, 以避免覆盖重要数据
127.0.0.1:6379>keys v*
1) "v1"
2) "v22"
127.0.0.1:6379>rename v22 v2
OK
127.0.0.1:6379>keys v*
1) "v1"
2) "v2"
127.0.0.1:6379>get v1
"4"
127.0.0.1:6379>get v2
"5
127.0.0.1:6379>rename v1 v2
OK
127.0.0.1:6379>get v1
(nil)
127.0.0.1:6379>get v2
"4"
1.6 renamenx
- renamenx 命令的作用是对已有 key 进行重命名, 并检测新名是否存在
- 其命令格式与rename 的命令格式除命令关键字不同外基本相同renamenx 源 key 目标 key
- 使用renamenx 命令进行重命名时, 如果目标 key 存在则不进行重命名
127.0.0.1:6379>keys *
1) "teacher"
2) "k3"
3) "k1"
4) "k2"
5) "v2"
127.0.0.1:6379>get teacher
"zhanglong"
127.0.0.1:6379>get v2
"4"
127.0.0.1:6379>renamenx v2 teacher
(integer) 0
127.0.0.1:6379>keys *
1) "teacher"
2) "k3"
3) "k1"
4) "k2"
5) "v2"
127.0.0.1:6379>get teacher
"zhanglong"
127.0.0.1:6379>get v2
"4"
1.7 dbsize
- dbsize 命令的作用是查看当前数据库中 key 的数目
127.0.0.1:6379> dbsize
(integer) 5
2)多数据库常用命令
2.1 多数据库间切换
- Redis 支持多数据库, Redis 在没有任何改动的情况下默认包含 16 个数据库, 数据库名称是用数字 0-15 来依次命名的。 使用 Select 命令可以进行 Redis 的多数据库之间的切换,命令格式为 selectindex,其中 index 表示数据库的序号。 而使用 redis-cli 连接 Redis 数据库后, 默认使用的是序号为 0 的数据库
- 如下所示, 使用 select 命令切换数据库后, 会在前端的提示符中显示当前所在的数据库序号如“127.0.0.1:6379[10]>” 表示当前使用的是序号为 10 的数据库; 若当前使用的数据库是序号为 0 的数据库, 提示符中则不显示序号, 如“127.0.0.1:6379>” 表示当前使用的是序号为 0 的数据库
127.0.0.1:6379>select 10 //切换至序号为 10 的数
据库
OK
127.0.0.1:6379[10]>select 15 //切换至序号为 15 的数据库
OK
127.0.0.1:6379[15]>select 0 //切换至序号为 0 的数据库
OK
2.2 多数据库间移动数据
- Redis 的多数据库在一定程度上是相对独立的, 例如在数据库 0 上面存放的 k1 的数据,在其它的 1-15 的数据库上是无法查看到的
127.0.0.1:6379>set k1 100
OK
127.0.0.1:6379>get k1
"100"
127.0.0.1:6379>select 1
OK
127.0.0.1:6379[1]>get k1
(nil)
2.3 move
- Redis 数据库提供了一个 move 的命令, 可以进行多数据库的数据移动
- 命令的基本语法格式为” move key dbindex“。 其中“key“表示当前数据库的目标键,“dbindex “表示目标数据库的序号
127.0.0.1:6379[1]>select 0 //切换至目标数据库 0
OK
127.0.0.1:6379>get k1 //查看目标数据是否存在
"100"
127.0.0.1:6379>move k1 1 //将数据库 0 中 k1 移动到数据库 1 中
(integer) 1
127.0.0.1:6379>select 1 //切换至目标数据库 1
OK
127.0.0.1:6379[1]>get k1 //查看被移动数据
"100"
127.0.0.1:6379[1]> select 0
OK
127.0.0.1:6379> get k1 //在数据库 0 中无法查看到 k1 的值
(nil)
2.4 清除数据库内数据
- Redis 数据库的整库数据删除主要分为两个部分: 清空当前数据库数据, 使用 FLUSHDB命令实现; 清空所有数据库的数据, 使用FLUSHALL 命令实现
- 但是, 数据清空操作比较危险, 生产环境下一般不建议使用
127.0.0.1:6379> flushdb
OK
四、Redis持久化
- Redis 是一种高级 key-value 数据库。 它跟 memcached 类似, 不过数据可以持久化, 而且支持的数据类型很丰富。 有字符串, 链表, 集合和有序集合。 支持在服务器端计算集合的并, 交和补集(difference)等, 还支持多种排序功能。 所以 Redis 也可以被看成是一个数据结构服务器
- Redis 的所有数据都是保存在内存中, 然后不定期的通过异步方式保存到磁盘上(这称为“半持久化模式” ); 也可以把每一次数据变化都写入到一个 append only file(aof)里面(这称为“全持久化模式” )
- 由于 Redis 的数据都存放在内存中, 如果没有配置持久化, redis 重启后数据就全丢失了, 于是需要开启 redis 的持久化功能, 将数据保存到磁盘上, 当 redis 重启后, 可以从磁盘中恢复数据
- redis 提供两种方式进行持久化, 一种是 RDB 持久化(原理是将 Reids 在内存中的数据库记录定时 dump 到磁盘上的 RDB 持久化), 另外一种是 AOF(append only file)持久化(原理是将 Reids 的操作日志以追加的方式写入文件)
1.持久化概述
- Redis是运行在内存中,内存中的数据断电丢失为了能够重用Redis数据,或者防止系统故障,我们需要将Redis中的数据写入到磁盘空间中,即持久化
2.持久化分类
- RDB方式:创建快照的方式获取某一时刻Redis中所有数据的副本
- AOF方式:将执行的写命令写到文件的末尾,以日志的方式来记录数据的变化
- RDB 持久化是指在指定的时间间隔内将内存中的数据集快照写入磁盘, 实际操作过程是fork 一个子进程, 先将数据集写入临时文件, 写入成功后, 再替换之前的文件, 用二进制压缩存储
- AOF 持久化以日志的形式记录服务器所处理的每一个写、 删除操作, 查询操作不会记录,以文本的方式记录, 可以打开文件看到详细的操作记录
1)RDB 和 AOF 的优缺点
1.1 RDB 优势
- 一旦采用该方式, 那么你的整个 Redis 数据库将只包含一个文件, 这对于文件备份而言是非常完美的。 比如, 你可能打算每个小时归档一次最近 24 小时的数据, 同时还要每天归档一次最近 30 天的数据。 通过这样的备份策略, 一旦系统出现灾难性故障, 我们可以非常容易的进行恢复
- 对于灾难恢复而言, RDB 是非常不错的选择。 因为我们可以非常轻松的将一个单独的文件压缩后再转移到其它存储介质上
- 性能最大化。 对于 Redis 的服务进程而言, 在开始持久化时, 它唯一需要做的只是fork 出子进程, 之后再由子进程完成这些持久化的工作, 这样就可以极大的避免服务进程执行 IO 操作了
- 相比于 AOF 机制, 如果数据集很大, RDB 的启动效率会更高
1.2 RDB 劣势
- 如果想保证数据的高可用性, 即最大限度的避免数据丢失, 那么 RDB 将不是一个很好的选择。 因为系统一旦在定时持久化之前出现宕机现象, 此前没有来得及写入磁盘的数据都将丢失
- 由于 RDB 是通过 fork 子进程来协助完成数据持久化工作的, 因此, 如果当数据集较大时, 可能会导致整个服务器停止服务几百毫秒, 甚至是 1 秒钟
1.3 AOF 优势
- 该机制可以带来更高的数据安全性, 即数据持久性。 Redis 中提供了 3 中同步策略,即每秒同步、 每修改同步和不同步。 事实上, 每秒同步也是异步完成的, 其效率也是非常高的, 所差的是一旦系统出现宕机现象, 那么这一秒钟之内修改的数据将会丢失。 而每修改同步, 我们可以将其视为同步持久化, 即每次发生的数据变化都会被立即记录到磁盘中。 可以预见, 这种方式在效率上是最低的。 至于无同步, 无需多言, 我想大家都能正确的理解它
- 由于该机制对日志文件的写入操作采用的是 append 模式,因此在写入过程中即使出
现宕机现象, 也不会破坏日志文件中已经存在的内容。 然而如果我们本次操作只是写入了一
半数据就出现了系统崩溃问题, 不用担心, 在 Redis 下一次启动之前, 我们可以通过
redis-check-aof 工具来帮助我们解决数据一致性的问题 - 如果日志过大, Redis 可以自动启用 rewrite 机制。 即 Redis 以 append 模式不断的
将修改数据写入到老的磁盘文件中, 同时 Redis 还会创建一个新的文件用于记录此期间有哪
些修改命令被执行。 因此在进行 rewrite 切换时可以更好的保证数据安全性 - AOF 包含一个格式清晰、 易于理解的日志文件用于记录所有的修改操作。 事实上,
我们也可以通过该文件完成数据的重建
1.4 AOF 劣势
- 对于相同数量的数据集而言, AOF 文件通常要大于 RDB 文件。 RDB 在恢复大数据集时的速度比 AOF 的恢复速度要快
- 根据同步策略的不同, AOF 在运行效率上往往会慢于 RDB。 总之, 每秒同步策略的效率是比较高的, 同步禁用策略的效率和 RDB 一样高效。
二者选择的标准, 就是看系统是愿意牺牲一些性能, 换取更高的缓存一致性(aof), 还是愿意写操作频繁的时候, 不启用备份来换取更高的性能, 待手动运行 save 的时候, 再做备份(rdb)。 rdb 这个就更有些 eventually consistent 的意思了
3. Redis持久化配置
1)RDB持久化配置
- Redis 会将数据集的快照 dump 到 dump.rdb 文件中。 此外, 我们也可以通过配置文件来修改 Redis 服务器 dump 快照的频率, 在打开 6379.conf 文件之后, 我们搜索 save, 可以看到下面的配置信息:
- save 900 1 #在 900 秒(15 分钟)之后, 如果至少有 1 个 key 发生变化,则 dump 内存快照
- save 300 10 #在 300 秒(5 分钟)之后, 如果至少有 10 个 key 发生变化,则 dump 内存快照
- save 60 10000 #在 60 秒(1 分钟)之后, 如果至少有 10000 个 key 发生变化, 则dump 内存快照
2)AOF持久化配置
- 在 Redis 的配置文件中存在三种同步方式, 它们分别是:
- appendfsync always #每次有数据修改发生时都会写入 AOF 文件
- appendfsynceverysec #每秒钟同步一次, 该策略为 AOF 的缺省策略
- appendfsync no #从不同步。 高效但是数据不会被持久化
4.AOF重写
1)AOF持久化缺点
-
Redis 会不断地将被执行的命令记录到 AOF 文件里面, 所以随着 Redis 不断运行, AOF文件的体积也会不断增长。 在极端情况下, 体积不断增大的 AOF 文件甚至可能会用完硬盘的所有可用空间
-
Redis 在重启之后需要通过重新执行 AOF 文件记录的所有写命令来还原数据集, 所以如果 AOF 文件的体积非常大, 那么还原操作执行的时间就可能会非常长
-
为了解决 AOF 文件体积不断增大的问题, 用户可以向 Redis 发送 BGREWRITEAOF 命令,这个命令会通过移除 AOF 文件中的冗余命令来重写(rewrite) AOF 文件, 使 AOF 文件的体积变得尽可能地小。 BGREWRITEAOF 的工作原理和 BGSAVE 创建快照的工作原理非常相似,Redis 会创建一个子进程, 然后由子进程负责对 AOF 文件进行重写
-
因为 AOF 文件重写也需要用到子进程, 所以快照持久化因为创建子进程而导致的性能问题和内存占用问题, 在 AOF持久化中也同样存在
-
跟快照持久化可以通过设置 save 选项来自动执行 BGSAVE 一样, AOF 持久化也可以通过设置 auto-aof-rewrite-percentage 选项和 auto-aof-rewrite-min-size 选项来自动执行BGREWRITEAOF
-
举个例子, 假设用户对 Redis 设置了配置选项 auto-aof-rewrite-percentage 100 和auto-aof-rewrite-min-size 64mb, 并且启动了 AOF 持久化, 那么当 AOF 文件的体积大于64MB, 并且 AOF 文件的体积比上一次重写之后的体积大了至少一倍(100%) 的时候, Redis将执行 BGREWRITEAOF 命令。 如果 AOF 重写执行得过于频繁的话, 用户可以考虑将auto-aof-rewrite-percentage 选项的值设置为 100 以上, 这种做法可以让 Redis 在 AOF 文件的体积变得更大之后才执行重写操作, 不过也会让 Redis 在启动时还原数据集所需的时间变得更长
5.性能管理
- redis 性能管理需要关注的数据指标有内存使用率、 内存碎片率、 回收 key 等
- 这其中有些数据都可以通过进入 redis 输入 info 命令进行查看。 需要查看某一项的值就后面跟具体参数, 下面查看 redis 使用内存值
127.0.0.1:6379> info memory
# Memory
used_memory:23182168
used_memory_human:22.11M
used_memory_rss:33394688
used_memory_rss_human:31.85M
used_memory_peak:35631072
used_memory_peak_human:33.98M
used_memory_peak_perc:65.06%
used_memory_overhead:841110
used_memory_startup:791152
used_memory_dataset:22341058
used_memory_dataset_perc:99.78%
allocator_allocated:23628888
allocator_active:24064000
allocator_resident:32014336
total_system_memory:3954036736
total_system_memory_human:3.68G
used_memory_lua:37888
used_memory_lua_human:37.00K
used_memory_scripts:0
used_memory_scripts_human:0B
number_of_cached_scripts:0
maxmemory:0
maxmemory_human:0B
maxmemory_policy:noeviction
allocator_frag_ratio:1.02
allocator_frag_bytes:435112
allocator_rss_ratio:1.33
allocator_rss_bytes:7950336
rss_overhead_ratio:1.04
rss_overhead_bytes:1380352
mem_fragmentation_ratio:1.44
mem_fragmentation_bytes:10253536
mem_not_counted_for_evict:0
mem_replication_backlog:0
mem_clients_slaves:0
mem_clients_normal:49694
mem_aof_buffer:0
mem_allocator:jemalloc-5.1.0
active_defrag_running:0
lazyfree_pending_objects:0
6.内存碎片率
- 上述信息中的 mem_fragmentation_ratio 给出了内存碎片率的数据指标, 它是由操系统分配的内存值 used_memory_rss 除以 redis 使用的内存值 used_memory 得出的
- used_memory_rss 的 rss 是 Resident Set Size 的缩写, 表示该进程所占物理内存的大小, 是操作系统分配给 Redis 实例的内存大小。 除了用户定义的数据和内部开销以外,used_memory_rss 指标还包含了内存碎片的开销, 内存碎片是由操作系统低效的分配/回收物理内存导致的。 操作系统负责分配物理内存给各个应用进程, Redis 使用的内存与物理内
存的映射是由操作系统上虚拟内存管理分配器完成的 - 举个例子来说, Redis 需要分配连续内存块来存储 1G 的数据集, 这样的话更有利, 但可能物理内存上没有超过 1G 的连续内存块, 那操作系统就不得不使用多个不连续的小内存块来分配并存储这 1G 数据, 也就导致内存碎片的产生
- 内存分配器另一个复杂的层面是,它经常会预先分配一些内存块给引用, 这样做会使加快应用程序的运行。 跟踪内存碎片率对理解 redis 实例的资源性能是非常重要的。 内存碎片率稍大于 1 是合理的, 这个值表示内存碎片率比较低,也说明redis没有发生内存交换。但如果内存碎片率超过1.5,那就说明redis消耗了实际需要物理内存的 150%, 其中 50%是内存碎片率。 若是内存碎片率低于 1 的话, 说明 Redis 内存分配超出了物理内存, 操作系统正在进行内存交换。 内存交换会引起非常明显的响应延迟
- 上述 info memory 中内存碎片率达到 4.24 是因为 redis 里面没有数据, 使用的内存少导致, 所以不足为奇。 如果生产环境内存碎片率过高, 会导致 redis 性能降低, 一般会有三种常见方法解决
- 如果内存碎片率超过 1.5, 重启 redis 服务器可以让额外产生的内存碎片失效并重新作为新内存来使用, 使操作系统恢复高效的内存管理。 额外碎片的产生是由于 redis 释放了内存块, 但内存分配器并没有返回内存给操作系统, 这个内存分配器是在编译时指定的,可以是 libc、 jemalloc 或者 tcmalloc
- 通过比较 used_memory_peak, used_memory_rss 和used_memory_metrics 的数据指标值可以检查额外内存碎片的占用。 从名字上可以看出,used_memory_peak 是过去 redis 内存使用的峰值, 而不是当前使用内存的值。 如果used_memory_peak 和 used_memory_rss 的值大致上相等,而且二者明显超过了 used_memory值, 这说明额外的内存碎片正在产生
- 在重启服务器之前, 需要在 redis-cli 工具上输入shutdown save 命令, 意思是强制让 redis 数据库执行保存操作并关闭 redis 服务, 这样做能保证在执行 redis 关闭时不丢失任何数据。 在重启后, redis 会从硬盘上加载持久化的
文件, 以确保数据集持续可用 - 如果内存碎片率低于 1, redis 实例可能会把部分数据交换到硬盘上。 内存交换会严重影响 Redis 的性能, 所以应该增加可用物理内存或减少实 redis 内存占用
- 修改内存分配, redis 支持 glibc’ s malloc、 jemalloc11、 tcmalloc 三种不同的内存分配器, 每个分配器在内存分配和碎片上都有不同的实现。 不建议运维人员修改 redis默认内存分配器, 因为这需要完全理解这几种内存分配器的差异, 也要重新编译 redis。 这个方法更多的是让其了解 Redis 内存分配器所做的工作
7.内存使用率
- 内存使用率是 redis 服务最关键的一部分。如果一个 redis 实例的内存使用率超过可用最大内存, 那么操作系统开始进行内存与 swap 空间交换, 把内存中旧的或不再使用的内容写入硬盘上(硬盘上的这块空间叫 swap 分区),以便腾出新的物理内存给新页或活动页(page)使用
- 上面 used_memory 字段数据表示的是由 redis 分配器分配的内存总量, 以字节为单位。其中used_memory_human 上的数据和 used_memory 是一样的值, 它以 M 为单位显示, 仅为了方便阅读
- used_memory 是 redis 使用的内存总量, 它包含了实际缓存占用的内存和 redis 自身运行所占用的内存(如元数据、 lua)。 它是由 redis 使用内存分配器分配的内存, 所以这个数据并没有把内存碎片浪费掉的内存给统计进去。 redis 默认最大使用内存是可用物理内存剩余的所有内存, 0 代表没有限制
- 在硬盘上进行读写操作要比在内存上进行读写操作慢很多。如果 redis 进程上发生内存
交换, 那么 redis 和依赖 redis 上数据的应用会受到严重的性能影响 - 通过查看used_memory 指标可知道 redis 正在使用的内存情况,如果 used_memory 大于可用最大内存,
那就说明 redis 实例正在进行内存交换或者已经内存交换完毕。运维人员应该根据这个情况
执行相对应的应急措施 - 如何避免内存交换发生主要有以下三点
- 针对缓存数据大小选择
- 如果缓存数据小于 4GB, 就使用 32 位的 Redis 实例。 因为 32 位实例上的指针大小只有64 位的一半,它的内存空间占用空间会更少些。 这有一个坏处就是,假设物理内存超过 4GB,那么 32 位实例能使用的内存仍然会被限制在 4GB 以下
- 要是实例同时也共享给其他一些应用使用的话, 那可能需要更高效的 64 位 Redis 实例, 这种情况下切换到 32 位是不可取的。不管使用哪种方式, Redis 的 dump 文件在 32 位和 64 位之间是互相兼容的, 因此倘若有减少占用内存空间的需求, 可以尝试先使用 32 位, 后面再切换到 64 位上
- 尽可能的使用 Hash 数据结构
- 因为 Redis 在储存小于 100 个字段的 Hash 结构上, 其存储效率是非常高的。 所以在不
需要集合(set)操作或 list 的 push/pop 操作的时候, 尽可能的使用 Hash 结构 - 比如, 在一个 web 应用程序中, 需要存储一个对象表示用户信息, 使用单个 key 表示一个用户, 其每个属性存储在 Hash 的字段里, 这样要比给每个属性单独设置一个 key-value 要高效的多。 通常情况下倘若有数据使用 string 结构, 用多个 key 存储时, 那么应该转换成单 key 多字段的 Hash 结构
- 如上述例子中介绍的 Hash 结构应包含, 单个对象的属性或者单个用户各种各样的资料。 Hash 结构的操作命令是 HSET(key, fields, value)和 HGET(key, field), 使用它可以存储或从 Hash 中取出指定的字段
- 因为 Redis 在储存小于 100 个字段的 Hash 结构上, 其存储效率是非常高的。 所以在不
- 设置 key 的过期时间
- 一个减少内存使用率的简单方法就是, 每当存储对象时确保设置 key 的过期时间。 倘若key 在明确的时间周期内使用或者旧 key 不大可能被使用时, 就可以用 Redis 过期时间命令(expire,expireat, pexpire, pexpireat)去设置过期时间, 这样 Redis 会在 key 过期时自动删除 key
- 假如你知道每秒钟有多少个新 key-value 被创建, 那可以调整 key 的存活时间, 并指定阀值去限制 Redis 使用的最大内存
- 针对缓存数据大小选择
8.设置 key 的过期时间
- 一个减少内存使用率的简单方法就是, 每当存储对象时确保设置 key 的过期时间。 倘若key 在明确的时间周期内使用或者旧 key 不大可能被使用时, 就可以用 Redis 过期时间命令(expire,expireat, pexpire, pexpireat)去设置过期时间, 这样 Redis 会在 key 过期时自动删除 key。 假如你知道每秒钟有多少个新 key-value 被创建, 那可以调整 key 的存活时间, 并指定阀值去限制 Redis 使用的最大内存
五、回收 key
- 当内存使用达到设置的最大阀值时, 需要选择一种 key 的回收策略, 可在 redis.conf配置文件中修改“maxmemory-policy”属性值
- 默认情况下回收策略是禁止删除, 若是 redis数据集中的 key 都设置了过期时间, 那么“volatile-ttl” 策略是比较好的选择
- 但如果key 在达到最大内存限制时没能够迅速过期, 或者根本没有设置过期时间。 那么设置为“allkeys-lru”值比较合适, 它允许 Redis 从整个数据集中挑选最近最少使用的 key 进行删除(LRU 淘汰算法)。 Redis 还提供了一些其他淘汰策略
volatile-lru: 使用 LRU 算法从已设置过期时间的数据集合中淘汰数据。
volatile-ttl: 从已设置过期时间的数据集合中挑选即将过期的数据淘汰。
volatile-random: 从已设置过期时间的数据集合中随机挑选数据淘汰。
allkeys-lru: 使用 LRU 算法从所有数据集合中淘汰数据。
allkeys-random: 从数据集合中任意选择数据淘汰
no-enviction: 禁止淘汰数据
- info stats 信息中的 evicted_keys 字段显示的是因为 maxmemory 限制导致 key 被回收
删除的数量 - 当 redis 由于内存压力需要回收一个 key 时, redis 首先考虑的不是回收最旧
的数据, 而是在最近最少使用的 key 或即将过期的 key 中随机选择一个 key, 从数据集中删
除
127.0.0.1:7001> info stats
- 根据 key 回收定位性能问题是非常重要的,因为通过回收 key,可以保证合理分配 redis有限的内存资源
- 如果 evicted_keys 值经常超过 0, 那应该会看到客户端命令响应延迟时间增加, 因为 Redis 不但要处理客户端过来的命令请求, 还要频繁的回收满足条件的 key
- 需要注意的是, 回收 key 对性能的影响远没有内存交换严重, 若是在强制内存交换和设置回收策略做一个选择的话, 则放弃设置回收 key 是比较合理的, 因为把内存数据交换到硬盘上对性能影响非常大
- 既然频繁的回收 key 也会导致性能问题,需要减少回收 key 来提升性能,根据经验如果开启快照功能, maxmemory 需要设置成物理内存的 45%, 这几乎不会有引发内存交换的危险
- 若是没有开启快照功能, 设置系统可用内存的 95%是比较合理的。 另外一种是分片技术, 分片是把数据分割成合适大小, 分别存放在不同的 redis 实例上, 每一个实例都包含整个数据集的一部分
- 通过分片可以把很多服务器联合起来存储数据, 相当于增加总的物理内存, 使其在没有内存交换和回收 key 的策略下也能存储更多的 key
- 假如有一个非常大的数据集, maxmemory 已经设置, 实际内存使用也已经超过了推荐设置的阀值, 通过数据分片能明显减少 key 的回收, 从而提高 Redis 的性能。 当然 redis 性能管理远远比上面列出的几种复杂的多, 需要多加学习