【高等数学】基本求导法则与导数公式

  • 常数和基本初等函数的导数公式
    1. ( C ) ′ = 0 (C)'=0 (C)=0
    2. ( x μ ) ′ = μ x μ − 1 (x^\mu)'=\mu x^{\mu-1} (xμ)=μxμ1
    3. ( sin ⁡ x ) ′ = cos ⁡ x (\sin x)'=\cos x (sinx)=cosx
    4. ( cos ⁡ x ) ′ = − sin ⁡ x (\cos x)'=-\sin x (cosx)=sinx
    5. ( tan ⁡ x ) ′ = sec ⁡ 2 x (\tan x)'=\sec^2x (tanx)=sec2x
    6. ( cot ⁡ x ) ′ = − csc ⁡ 2 x (\cot x)'=-\csc^2 x (cotx)=csc2x
    7. ( sec ⁡ x ) ′ = sec ⁡ x tan ⁡ x (\sec x)'=\sec x\tan x (secx)=secxtanx
    8. ( csc ⁡ x ) ′ = − csc ⁡ x cot ⁡ x (\csc x)'=-\csc x\cot x (cscx)=cscxcotx
    9. ( a x ) ′ = a x ln ⁡ a ( a > 0 , a ≠ 1 ) (a^x)'=a^x\ln a(a>0,a\ne 1) (ax)=axlna(a>0,a=1)
    10. ( e x ) ′ = e x (e^x)'=e^x (ex)=ex
    11. ( log ⁡ a x ) ′ = 1 x ln ⁡ a ( a > 0 , a ≠ 1 ) (\log_ax)'=\dfrac{1}{x\ln a}(a>0,a\ne 1) (logax)=xlna1(a>0,a=1)
    12. ( ln ⁡ x ) ′ = 1 x (\ln x)'=\dfrac{1}{x} (lnx)=x1
    13. ( arcsin ⁡ x ) ′ = 1 1 − x 2 (\arcsin x)'=\dfrac{1}{\sqrt{1-x^2}} (arcsinx)=1x2 1
    14. ( arccos ⁡ x ) ′ = − 1 1 − x 2 (\arccos x)'=-\dfrac{1}{\sqrt{1-x^2}} (arccosx)=1x2 1
    15. ( arctan ⁡ x ) ′ = 1 1 + x 2 (\arctan x)'=\dfrac{1}{1+x^2} (arctanx)=1+x21
    16. ( a r c c o t   x ) ′ = − 1 1 + x 2 (\newcommand{\arccot}{\mathrm{arccot}\,}\arccot x)'=-\dfrac{1}{1+x^2} (arccotx)=1+x21
  • 函数的和、差、积、商的求导法则
    u = u ( x ) , v = v ( x ) u=u(x),v=v(x) u=u(x),v=v(x)都可导,则
    (1) ( u ± v ) ′ = u ′ ± v ′ (u\pm v)'=u'\pm v' (u±v)=u±v
    (2) ( C u ) ′ = C u ′ ( C 是常数 ) (Cu)'=Cu'(C是常数) (Cu)=Cu(C是常数)
    (3) ( u v ) ′ = u ′ v + u v ′ (uv)'=u'v+uv' (uv)=uv+uv
    (4) ( u v ) ′ = u ′ v − u v ′ v 2 ( v ≠ 0 ) (\dfrac{u}{v})'=\dfrac{u'v-uv'}{v^2}(v\ne 0) (vu)=v2uvuv(v=0)
  • 反函数的求导法则
    x = f ( y ) x=f(y) x=f(y)在区间 I y I_y Iy内单调、可导且 f ′ ( y ) ≠ 0 f'(y)\ne0 f(y)=0,则它的反函数 y = f − 1 ( x ) y=f^{-1}(x) y=f1(x) I x = f ( I y ) I_x=f(I_y) Ix=f(Iy)内也可导,且 [ f − 1 ( x ) ] ′ = 1 f ′ ( y ) 或 d y d x = 1 d x d y [f^{-1}(x)]'=\frac{1}{f'(y)}或\frac{dy}{dx}=\frac{1}{\dfrac{dx}{dy}} [f1(x)]=f(y)1dxdy=dydx1
  • 复合函数的求导法则
    y = f ( u ) y=f(u) y=f(u),而 u = g ( x ) u=g(x) u=g(x) f ( x ) f(x) f(x) g ( x ) g(x) g(x)都可导,则复合函数 y = f [ g ( x ) ] y=f[g(x)] y=f[g(x)]的导数为 d y d x = d y d u ⋅ d u d x 或 y ′ ( x ) = f ′ ( u ) ⋅ g ′ ( x ) \frac{dy}{dx}=\frac{dy}{du}·\frac{du}{dx}或y'(x)=f'(u)·g'(x) dxdy=dudydxduy(x)=f(u)g(x)
  • 21
    点赞
  • 117
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
链式求导法则是求解复合函数导数的一种方法,它可以用于求解高阶偏导数。在使用链式求导法则求解二阶偏导数时,我们需要先求解一阶偏导数,然后再对一阶偏导数进行求导。 具体来说,对于一个函数f(x1, x2, ..., xn),其通过多个函数组合得到,即f(g1(x1, x2, ..., xn), g2(x1, x2, ..., xn), ..., gm(x1, x2, ..., xn))。假设每个函数gi都可导,那么根据链式求导法则,我们可以通过以下步骤求解二阶偏导数: 1. 首先,对于每个变量xi,计算f对gi的一阶偏导数,即∂f/∂gi。 2. 接下来,对于每个变量xi和xj,计算f对gi的一阶偏导数关于xj的偏导数,即∂^2f/∂xj∂gi。 3. 最后,对于每对变量xi和xj,计算f对gi的一阶偏导数关于xi和xj的偏导数,即∂^2f/∂xi∂xj。 需要注意的是,这里的gi可以是直接与变量xi相关的函数,也可以是通过其他变量组合得到的函数。通过这个方法,我们可以求解复杂函数的二阶偏导数。 引用中提到的对x求偏导的示例可以帮助我们理解链式求导法则的应用。对于fx = x^Tx,其中x是一个向量,我们可以将其写为fx = g(x)^Tg(x),其中g(x) = x。根据链式求导法则,我们先求解一阶偏导数∂f/∂g(x),得到∂f/∂g(x) = 2g(x)。然后,我们对一阶偏导数进行求导,得到二阶偏导数∂^2f/∂x^2 = 2。 因此,链式求导法则可以用于求解复合函数的二阶偏导数。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* *3* [深度之眼(十八)——偏导数与矩阵的求导](https://blog.csdn.net/m0_52592798/article/details/126027585)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 100%"] [ .reference_list ]

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值