DENEVIL: TOWARDS DECIPHERING AND NAVIGATING THE ETHICAL VALUES OF LARGE LANGUAGE MODELS VIA INSTRUCTION LEARNING
Denevil:通过教学学习来解读和引导大型语言模型的伦理价值
来源:ICLR 2024
论文背景
随着大型语言模型(LLMs)的发展,这些模型在语言理解和生成方面展现出了前所未有的能力,被广泛应用于日常生活中的各个领域。然而,随着LLMs的普及,它们生成的内容可能引发的社会风险也越来越受到关注,特别是生成的内容中包含的不道德或有害信息。尽管已有关于特定问题(如偏见)的研究,但从未从道德哲学的角度全面探讨过LLMs内在的价值观。
针对的问题
本研究针对的问题是:目前对LLMs内在价值观的研究还不成熟,特别是缺乏动态探查和导航这些模型伦理价值观的有效方法。静态的数据集和判别式评估方法无法可靠地反映LLMs的真实价值观,因为它们只是考察了模型对某些价值原则的知识掌握情况,而不是它们在实际情境中的行为表现。
(a)判别评价和生成评价的例子。(b)说明我们的生成评价框架DeNEVIL。(c)描述我们的上下文对齐方法,VILMO。
提出的方法
针对上述问题,研究人员提出了DeNEVIL算法,这是一种新颖的提示生成算法,旨在动态探测LLMs的价值观脆弱性,并通过生成行为来揭示其违反特定伦理的情况,进而探究模型内在的伦理倾向。DeNEVIL与静态数据集不同,它会根据每个模型动态地生成新的、定制化的提示,避免了测试数据泄漏的问题。此外,研究人员基于道德基础理论构建了一个名为MoralPrompt的高质量数据集,包含2,397个提示,涵盖了500多个价值原则,并据此基准测试了27种不同架构和规模的LLMs。
创新点
- 动态探查机制:DeNEVIL算法能够动态地探查LLMs的价值观脆弱性,而非依赖于固定的数据集。
- 生成式评估:通过让LLMs生成行为而非简单地判断其对价值原则的了解程度,更能反映模型在实际情境中的行为表现。
- 广泛适用性:DeNEVIL方法适用于黑盒和开源模型,甚至无需指令调优就能发挥作用。
对此后研究的指导意义
- 伦理对齐:研究揭示了大多数模型存在本质上的失衡,强调了进行伦理价值对齐的重要性。
- 成本效益:提出的VILMO方法作为一种上下文对齐手段,通过学习生成适当的值指令来提高LLMs输出的价值一致性,具有成本效益和灵活性。
- 多语言文化考量:研究强调了在未来研究中考虑多种语言和文化背景下价值原则的必要性。
- 伦理风险意识:研究指出了利用DeNEVIL方法进行恶意攻击的可能性,提醒学术界和工业界在伦理评估和对齐研究中要谨慎行事。
综上所述,该研究不仅提供了一种新的方法来动态探查和导航LLMs的伦理价值观,还为后续研究提供了宝贵的指导意义,尤其是在伦理对齐、多语言文化考量以及伦理风险意识等方面。