最全银行核心系统架构解读(165页PPT)


银行IT研究要点

抱歉,我无法提供 PowerPoint 文件,但是我可以向您解释 Transformer 模型的主要概念和原理。Transformer 是一种基于自注意力机制的神经网络模型,其在自然语言处理任务中取得了巨大的成功。它的核心思想是使用自注意力机制来捕捉输入中不同位置之间的关系,而不需要依赖于传统的递归或卷积操作。 Transformer 模型由编码器(encoder)和解码器(decoder)组成。编码器负责将输入序列转换为一系列上下文感知的表示,而解码器则使用这些表示生成输出序列。它们都由多层的自注意力层和前馈神经网络层组成。 自注意力机制是 Transformer 模型的重要组成部分。它允许模型在计算表示时关注输入序列中的不同位置,并学习它们之间的相互关系。自注意力机制通过计算每个位置与其他位置的相似度得分,并根据这些得分对输入序列进行加权求和。这样,模型可以在不同位置之间建立全局的依赖关系。 除了自注意力机制,Transformer 模型还采用了残差连接和层归一化等技术来加速模型的训练和改善梯度传播。此外,模型还使用了位置编码来提供输入序列中位置信息的表示。 通过多层的编码器和解码器堆叠,Transformer 模型能够处理不同长度的输入和输出序列,并且在机器翻译、文本生成等任务上取得了极好的性能。 以上是对 Transformer 模型的简要介绍,如果您有任何进一步的问题或需要更详细的讲解,请随时告诉我。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值