最短路径算法学习(三)

弗洛伊德(Floyd)算法

 在带权有向图G中,求G中的任意一对顶点间的最短路径问题,也是十分常见的一种问题。

解决这个问题的一个方法是执行n次迪杰斯特拉算法(最短路径算法学习(二)),这样就可以求出每一对顶点间的最短路径,执行的时间复杂度为O(n3)。

而另一种算法是由弗洛伊德提出的,时间复杂度同样是O(n3),但算法的形式简单很多。

Floyd算法 是一种利用动态规划的思想寻找给定的加权图中多源点之间最短路径的算法

主要思想

从第1个点到第n个点依次加入图中,每个点加入后进行试探是否有路径长度被更改。

具体方法:

        1. 遍历图中每一个点(i,j)双重循环,判断每个点对距离是否因为加入的点而发生最小距离变化,如果发生改变,更新两点(i,j)的距离
         2. 重复上述直到最后插点试探完成
更新距离的 状态转移方程为 :  dp[i][j] = min(dp[i][j],dp[i][k]+ dp[k][j])

#include <iostream>
#include <queue>
#include <vector>
using namespace std;


using uint  = unsigned int;
const uint INF = INT_FAST8_MAX;

int main()
{
    vector<vector<uint>> graph={
        {0,6,3,INF,INF,INF},
        {6,0,1,2,INF,INF},
        {3,1,0,3,4,INF},
        {INF,2,3,0,2,3},
        {INF,INF,4,2,0,5},
        {INF,INF,INF,3,5,0},
    };


    //一次把每个顶点加入
    for(int k=0;k<graph.size();k++){
        // 都需要遍历邻接矩阵
        for(int i=0;i<graph.size();i++){
            for(int j=0;j<graph.size();j++){
                graph[i][j] = min(graph[i][j],graph[i][k]+graph[k][j]);
            }
        }
    }

    for(auto &line: graph){
        for(auto dis : line){
            cout<< dis<<" ";
        }
        cout<<endl;
    }

    return 0;
}

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值