题意描述
思路
我们定义
d
p
[
i
[
[
0
]
dp[i[[0]
dp[i[[0]为选择偶数的最大和,即最后一步是加法的最大和;
d
p
[
i
]
[
1
]
dp[i][1]
dp[i][1]为选择奇数的最大和,即最后一步是减法的最大和。得出转移方程:
d
p
[
i
]
[
0
]
=
m
a
x
(
d
p
[
i
−
1
]
[
0
]
,
d
p
[
i
−
1
]
[
1
]
+
a
[
i
]
)
dp[i][0]=max(dp[i-1][0],dp[i-1][1]+a[i])
dp[i][0]=max(dp[i−1][0],dp[i−1][1]+a[i])
d
p
[
i
]
[
1
]
=
m
a
x
(
d
p
[
i
−
1
]
[
1
]
,
d
p
[
i
−
1
]
[
0
]
−
a
[
i
]
)
dp[i][1]=max(dp[i-1][1],dp[i-1][0]-a[i])
dp[i][1]=max(dp[i−1][1],dp[i−1][0]−a[i])
AC代码
#include<bits/stdc++.h>
#define x first
#define y second
#define PB push_back
#define mst(x,a) memset(x,a,sizeof(x))
#define all(a) begin(a),end(a)
#define rep(x,l,u) for(ll x=l;x<u;x++)
#define rrep(x,l,u) for(ll x=l;x>=u;x--)
#define sz(x) x.size()
#define IOS ios::sync_with_stdio(false);cin.tie(0);
using namespace std;
typedef unsigned long long ull;
typedef pair<int,int> PII;
typedef pair<long,long> PLL;
typedef pair<char,char> PCC;
typedef long long ll;
const int N=3*1e5+10;
const int M=1e6+10;
const int INF=0x3f3f3f3f;
const int MOD=1e9+7;
ll a[N],f[N][2];
void solve(){
int n,q;cin>>n>>q;
rep(i,1,n+1) f[i][0]=0;
rep(i,1,n+1) f[i][1]=-INF;
rep(i,1,n+1) cin>>a[i];
rep(i,1,n+1){
f[i][0]=max(f[i-1][0],f[i-1][1]+a[i]);
f[i][1]=max(f[i-1][1],f[i-1][0]-a[i]);
}
cout<<max(f[n][0],f[n][1])<<endl;
}
int main(){
IOS;
int t;cin>>t;
while(t--){
solve();
}
return 0;
}