林克的蛋糕
描述
林克被造的纪念日快要到了。根据任天堂公司的惯例,每年到这个时间都会一些蛋糕分给林克的朋友。这些蛋糕有不同的口味,比如南瓜蛋糕、坚果蛋糕、西瓜蛋糕、胡萝卜蛋糕、水果蛋糕等等(有N种不同口味,大小不同的蛋糕)。
为了公平,每个朋友都会分到一块大小相同的蛋糕(不需要同样形状,但是要同一种口味,不允许混合口味,否则就会变成奇怪的菜肴)。
假设每个蛋糕都是一个高为1,半径不等的圆柱体,一共有F+1个人(F是林克的朋友个数,还要加上林克的设计者)。
所有人拿到的蛋糕是同样大小的,请问每个人拿到的蛋糕最大是多少?
输入
第一行包含两个正整数N和F,1 ≤ N, F ≤ 10 000,表示蛋糕的数量和朋友的数量。
第二行包含N个1到10000之间的整数,表示每个蛋糕的半径。
输出
输出每个人能得到的最大的蛋糕的体积,精确到小数点后三位。
输入样例 1
3 3
4 3 3
输出样例 1
25.133
#include<iostream>
#include<cmath>
#include<iomanip>
using namespace std;
#define num 100000
#define pi acos(-1.0)
#define eps 0.000001
double a[num];
int bianarysearch(double mid,int n,int f)
{
int i = 0;
int count=0;
for (i = 0; i < n; i++)
{
count += (int)(a[i] / mid);
}
if (count >= f)
return 1;
else
return 0;
}
int main()
{
int N, F;
double max = 0;
cin >> N >> F;
F = F + 1;
for (int i = 0; i < N; i++)
{
cin >> a[i];
a[i] = a[i] * a[i] * pi;
if (max < a[i])
max = a[i];
}
double left = 0, right = max;
double mid;
while (right - left> 1e-6)
{
mid = left + (right - left) / 2;
if (bianarysearch(mid, N, F))
left = mid+eps;
else
right = mid;
}
cout << fixed << setprecision(3) << left << endl;
}
思路:从0和最大的蛋糕中间不断查找,中点设为所分蛋糕体积。