算法分析与设计作业10装载问题(0-1背包问题)

1.问题

在这里插入图片描述

整数规划问题,0-1 背包问题

2.解析

解该类问题的思路是轻者先装,直到再装任何集装箱将使轮船载重量超过 C 时停止.在这之前我们首先明白一个定理:对于任何正整数 k,算法(轻者先装)对 k 个集装箱的实例得到最优解
以下为该定理的证明:
在这里是通过数学归纳法来证明的。
(1)k=1,只有 1 个集装箱,其重量小于 C。任何装法都只有一种方式,
因此都是最优解,因此轻者先装也是最优解。
(2)归纳假设:假设算法对于规模为 k 的输入都能得到最优解。
考虑规模为 k+1 的输入,N={1,2,3,…k+1},w={w1,w2,…, wk+1}是集装箱重量, w1<=w2<=…<= wk+1。
从 N 中拿掉最轻的集装箱,得到 k 规模的输入:
N’=N-{1}={2,3,…,k+1}
W’=W-{w1}
C’=C-w1
根据归纳假设,对于 k 个输入,N’、W’、C’的最优解为 I’,即
I’为 N’,不含 1 的最优解(归纳假设得),
令I=I’U{1},那么 I 必然是 N 的最优解,这也是算法对于 N,W,C 的解.
证明:I 必然是 N 的最优解,采用反证法,即假设 I 不是 N 的最优解。

(1)构建最优解 I*(N,含 1):假设 I 不是 N 的最优解。则必然存在
最优解 I*,如果 I中没有 1,用 1 替代 I中的第一个集装箱标号得到的解也是
最优解(个数不变,因此也是最优解),使得 I为包含 1 的关于 N 的最优解, 且|I|>|I|。 (2) 构建最优解 I*’( N’,不含 1):因为 I为包含 1 的关于 N
的最优解,构建的 I
’=I*-{1}是不包含 1 的最优解(待证明),即关于 N’、 W’、C’的最优解(N’、W’、C’不包含 1)。
(3)构建的最优解 I*’与归纳假设的最优解 I’比较:由(1)
|I*|>|I|得,| I*’|= |I*-{1}|>|I-{1}|=|T’|,与 I’的最优性矛盾(最优解 I*-
{1}大于最优解 I’)

3.设计

void Knapsack(int* v, int* w, int c, int n, int(*m)[maxn]) {
	//先判断第n个物品能不能装入背包
	int jMax = min(w[n] - 1, c);
	//当0<=j<=wn时,m(n,j)=0
	for (int j = 0; j <= jMax; j++) {
		m[n][j] = 0;
	}
	//当j>=wn时,m(n,j)=vn
	for (int j = w[n]; j <= c; j++) {
		m[n][j] = v[n];
	}
	//再从n-1往前开始判断第n个物品到第i个物品能不能装下
	for (int i = n - 1; i > 1; i--) {
		jMax = min(w[i] - 1, c);
		for (int j = 0; j < jMax; j++) {
			m[i][j] = m[i + 1][j];
		}
		for (int j = w[i]; j <= c; j++) {
			m[i][j] = max(m[i + 1][j], m[i + 1][j - w[i]] + v[i]);
		}

	}
	//判断第n个到第1个物品能不能装下
	m[1][c] = m[2][c];
	if (c >= w[1])
		m[1][c] = max(m[1][c], m[2][c - w[1]] + v[1]);
}

//回溯查找最优序列,能装下的赋值为1,不能装下的赋值为0
void Traceback(int(*m)[maxn], int* w, int c, int n, int* x) {
	for (int i = 1; i < n; i++) {
		if (m[i][c] == m[i + 1][c])
			x[i] = 0;
		else {
			x[i] = 1;
			c -= w[i];
		}
	}
	x[n] = (m[n][c]) ? 1 : 0;
}

4.分析

时间复杂度为O(nlogn)。

5.源码

Knapsack0-1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值