自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(11)
  • 收藏
  • 关注

原创 Diceloss

Dice lossLdice=1−2IUwhere I=∑i=1Nyipi   U=∑i=1Nyi+pi\boldsymbol{L}_{dice} = 1-\frac{2\boldsymbol{I}}{\boldsymbol{U}}\\where\ \boldsymbol{I} = \sum_{i=1}^N y_ip_i\ \ \ \boldsymbol{U} = \sum_{i=1}^Ny_i+p_iLdice​=1−U2I​where I=i=1∑

2022-03-24 11:40:00 364

原创 支持向量机SVM

SVM1.问题定义2.求解三级目录1.问题定义{wTx+b=1wTx+b=−1\left \{ \begin{aligned}w^Tx+b &= 1\\w^Tx+b &= -1\end{aligned}\right. {wTx+bwTx+b​=1=−1​我们最大化两条直线的距离:max 2∣∣w∣∣2<=>min ∣∣w∣∣2s.t. yi(wTxi+b)−1≥0\begin{aligned}\rm{max}\ \frac{2}{||w||_

2022-03-15 18:18:46 1047

原创 高斯过程详解

高斯过程1.高斯分布的重要性2.一元高斯分布3.多元高斯分布4.条件高斯分布参考1.高斯分布的重要性高斯分布号称上帝的分布,是概率论与数理统计中应用最广泛的分布。为什么高斯分布如此普遍?我们从两个角度解释这个现象。第一,根据最大熵分布原理,在定义域区间(−∞,+∞)(-\infty,+\infty)(−∞,+∞)上,对于随机变量XXX,若E(X)=μ,D(X)=σ2E(X)=\mu,D(X)=\sigma^2E(X)=μ,D(X)=σ2,则使得概率密度p(X)p(X)p(X)熵最大的分布就是高斯分布N(

2021-07-02 19:24:50 1183

原创 矩阵求导公式总结

https://zhuanlan.zhihu.com/p/2627511952 标量对矩阵的求导术的基本思想

2021-06-30 16:05:04 109

原创 信息熵公式解析

熵1.定义一、pandas是什么?二、使用步骤1.引入库2.读入数据总结1.定义提示:这里可以添加本文要记录的大概内容:例如:随着人工智能的不断发展,机器学习这门技术也越来越重要,很多人都开启了学习机器学习,本文就介绍了机器学习的基础内容。提示:以下是本篇文章正文内容,下面案例可供参考一、pandas是什么?示例:pandas 是基于NumPy 的一种工具,该工具是为了解决数据分析任务而创建的。二、使用步骤1.引入库代码如下(示例):import numpy as npimport

2021-06-29 00:03:00 1337

原创 KL散度(相对熵)

KL散度(相对熵)1.定义2.非负性证明3.参考1.定义先给出公式:KL(p(x)∣∣q(x))=∫p(x)log⁡p(x)q(x)dx=∫p(x)log⁡p(x)dx−∫p(x)log⁡q(x)dx(1)KL(p(x)||q(x))=\int p(x)\log \frac{p(x)}{q(x)}dx=\int p(x)\log p(x)dx-\int p(x)\log q(x)dx\tag{1}KL(p(x)∣∣q(x))=∫p(x)logq(x)p(x)​dx=∫p(x)logp(x)dx−∫p(

2021-06-28 18:00:10 1721

原创 逻辑回归(LR)

从逻辑回归到sotfmax回归1.sigmod函数2.二分类2.1.回归模型2.2.参数估计2.3.求解3.多分类(K类)3.1训练K-1个分类器3.2 sotfmax训练Wp×K=[w1,w2,...,wK]W_{p\times K}=[w_1,w_2,...,w_K]Wp×K​=[w1​,w2​,...,wK​]矩阵1.sigmod函数σ(x)=ex1+ex(1)\sigma(x)=\frac{e^x}{1+e^x}\tag{1}σ(x)=1+exex​(1)sigmod函数如下图所示:sigm

2021-06-28 17:34:39 708

原创 极大似然估计和最小化交叉熵损失(KL散度)

极大似然估计和最小化交叉熵损失(KL散度)1.无标签样本1.1.数据集1.2.公式推导2.有标签样本2.1.数据集2.2.公式推导3.参考先说结论:极大似然估计和最小化交叉熵损失(KL散度)完全等价我们从无标签和有标签两个角度来证明这个结论。1.无标签样本1.1.数据集假设我们的数据集为D={x1,x2,⋯ ,xN}\mathcal{D}=\{x_1,x_2,\cdots,x_N\}D={x1​,x2​,⋯,xN​},每个数据为xi=[xi1xi2⋯xip]x_i=\begin{bmatrix}x

2021-06-26 20:54:08 1568

原创 最大熵分布及其应用

1.最大熵分布函数:从数域到数域的映射y=f(x)y=f(x)y=f(x)泛函:从函数(即向量空间)到数域的映射z=h(f)z=h(f)z=h(f)算子:函数到函数的映射g(x)=∇xf(x)g(x)=\nabla_xf(x)g(x)=∇x​f(x)凸集:对于集合内的每一对点,连接该对点的直线段上的每个点也在该集合内凸函数:定义域为凸集f(x)f(x)f(x),θ=z−xy−x,θ∈[0,1]\theta=\frac{z-x}{y-x},\theta\in [0,1]θ=y−xz−x​,θ∈[0,

2021-06-26 16:43:55 1245

原创 Python常用语法

Python基础笔记1.字符串(str)1.1.添加1.1.2.直接相加1.2.删除列表指定第二个元素排序前言一、pandas是什么?二、使用步骤1.引入库2.读入数据总结1.字符串(str)1.1.添加1.1.2.直接相加中心对齐填充str0.center(width, fillchar)#返回一个指定的宽度 width 居中的字符串,fillchar 为填充的字符,默认为空格。左对齐填充str0.ljust(width[, fillchar])#返回一个原字符串左对齐,长度width的

2021-06-25 13:04:40 3204

原创 从线性回归到高斯过程回归

线性回归欢迎使用Markdown编辑器新的改变功能快捷键合理的创建标题,有助于目录的生成如何改变文本的样式插入链接与图片如何插入一段漂亮的代码片生成一个适合你的列表创建一个表格设定内容居中、居左、居右SmartyPants创建一个自定义列表如何创建一个注脚注释也是必不可少的KaTeX数学公式新的甘特图功能,丰富你的文章UML 图表FLowchart流程图导出与导入导出导入欢迎使用Markdown编辑器你好! 这是你第一次使用 Markdown编辑器 所展示的欢迎页。如果你想学习如何使用Markdown编

2021-06-21 16:17:57 720

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除