云桬
码龄5年
关注
提问 私信
  • 博客:13,801
    动态:2
    13,803
    总访问量
  • 10
    原创
  • 1,129,508
    排名
  • 2
    粉丝
  • 0
    铁粉

个人简介:非池中鱼

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:北京市
  • 加入CSDN时间: 2019-10-12
博客简介:

weixin_45742602的博客

查看详细资料
个人成就
  • 获得11次点赞
  • 内容获得5次评论
  • 获得18次收藏
创作历程
  • 2篇
    2023年
  • 8篇
    2022年
成就勋章
TA的专栏
  • paddlepaddle安装报错
    1篇
  • paddlenlp报错
    1篇
  • 事件抽取论文笔记
    8篇
兴趣领域 设置
  • 人工智能
    自然语言处理知识图谱
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

175人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

解决paddlepaddle安装过程中遇到的ImportError: libcudart.so.10.2: cannot open shared object file: Nosuch file or

安装paddlepaddle时显示安装成功,但是运行的时候报错ImportError: libcudart.so.10.2: cannot open shared object file: Nosuch file or directory
原创
发布博客 2023.03.07 ·
5811 阅读 ·
9 点赞 ·
3 评论 ·
10 收藏

安装paddlynlp遇到的问题:ImportError: cannot import name ‘find_packages‘ from ‘setuptools‘ (unknown location

解决pip安装paddlenlp时遇到的setuptools报错
原创
发布博客 2023.03.07 ·
673 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

具有增强的显式和隐式语义信息的联合实体和关系提取网络(2022)论文笔记

联合语义的实体和关系抽取
原创
发布博客 2022.07.17 ·
816 阅读 ·
0 点赞 ·
2 评论 ·
4 收藏

Query and Extract: Refining Event Extraction as Type-oriented Binary Decoding(2022)论文笔记

适用于零样本事件抽取的模型
原创
发布博客 2022.07.11 ·
624 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

Document-level event argument extraction by conditional generation.论文笔记

Document-Level Event Argument Extraction by Conditional Generation笔记
原创
发布博客 2022.06.09 ·
659 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

DOCUMENT-LEVEL EVENT EXTRACTION VIA HUMAN-LIKE READING PROCESS(2022)论文笔记

DEE面临的挑战分散参数、多事件思想通常,人类的阅读过程涉及三个阶段:预读、仔细阅读和后读。在预读过程中,人类读者预览整个文档,形成对文档内容的总体认知。在仔细阅读过程中,人类读者会仔细阅读每个句子,以根据其特定的阅读目的定位详细信息。在阅读后,对文档进行审查,检查遗漏的细节并完成对文档的理解。多阶段阅读过程从粗略到精细地理解文档,这使得在整个文档中提取事件事实变得有效。模型(HRE)将人类阅读方式分为两个阶段:粗读和精度。粗读用来检测事件发生,精读用来提取参数。具体来说,精读定位每一个角色的论元
原创
发布博客 2022.05.27 ·
264 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Document-Level Event Role Filler Extraction using Multi-Granularity Contextualized Encodin(2020)论文笔记

背景当识别事件参数所需的信息分布在多个句子中时,需要更大的上下文视图来确定哪些文本跨度对应于事件角色填充.完整的文档级提取问题通常需要角色填充词提取、名词短语共指消解和事件跟踪(即,确定提取的角色填充词属于哪个事件).在这项工作中,只关注文档级别的角色填充提取.贡献研究上下文长度(即最大输入段长度)对模型性能的影响,并找到最合适的长度;提出一种多粒度阅读器,动态聚合从本地上下文(例如,句子级别)和更广泛的上下文(例如,段落级别)中学到的信息.数据集MNC-4:由联邦广播信息服务局免费提供模型
原创
发布博客 2022.04.25 ·
1086 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

An End-to-End Document-level Framework for Chinese Financial Event Extraction论文笔记

背景模型模型总结:将文档 d 表示为句子序列 [s1; s2; ···; sNs ],每个句子 si ∈ Rdw×Nw 由一系列令牌嵌入组成,实体识别用BI-LSTM-CRF 经典模型,因为我们的任务与上下文有关,基于transform的强大功能,我们将LSTM换成Transform并命名为Transformer-1(si)进行BIO(实体标注),由于实体提及通常有多个可变长token,我们首先通过对其token嵌入进行最大池操作来为每个实体提及获得固定大小的嵌入。我们对 [hi,j , · · ·
原创
发布博客 2022.04.25 ·
965 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

A Document-level Chinese Financial Event Extraction System based on Automatically Labeled (2018)论文笔记

背景在特定领域,如金融、医疗和司法领域,由于数据标签过程的高成本,没有足够的标签数据.而且,目前大多数方法都侧重于从一个句子中提取事件,但是一个事件通常在一个文档中由多个句子表示.数据集财务事件知识库是结构化数据,包括九种常见的财务事件类型,并以表格形式存储.非结构化文本数据来自公司发布的官方公告,本文从搜狐证券网获取这些文本数据.对于每种类型的金融事件,我们构建了一个事件触发器字典,例如在 Equity Freeze 事件中冻结和在 Equity Pledge 事件中质押。因此可以通过从公告中
原创
发布博客 2022.04.25 ·
1485 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Automatically Labeled Data Generation for Large Scale Event Extraction论文笔记

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录前言一、当年现状二、数据集三、方法小结总结前言例如:本周阅读了这篇论文,特此记录笔记一、当年现状。在 ACE 2005 中,所有 33 种事件类型都是手动预定义的,并且由于注释过程非常昂贵,因此仅在 599 个英文文档中手动注释了相应的事件信息(包括触发器、事件类型、参数及其角色)。 如图 2 所示,ACE 2005 中近 60% 的事件类型的标记样本少于 100 个,甚至有三种事件类型的标记样本少于 10 个。 此外,.
原创
发布博客 2022.04.25 ·
1419 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏