有一个长度为 arrLen 的数组,开始有一个指针在索引 0 处。
每一步操作中,你可以将指针向左或向右移动 1 步,或者停在原地(指针不能被移动到数组范围外)。
给你两个整数 steps 和 arrLen ,请你计算并返回:在恰好执行 steps 次操作以后,指针仍然指向索引 0 处的方案数。
由于答案可能会很大,请返回方案数 模 10^9 + 7 后的结果。
示例 1:
输入:steps = 3, arrLen = 2
输出:4
解释:3 步后,总共有 4 种不同的方法可以停在索引 0 处。
向右,向左,不动
不动,向右,向左
向右,不动,向左
不动,不动,不动
示例 2:
输入:steps = 2, arrLen = 4
输出:2
解释:2 步后,总共有 2 种不同的方法可以停在索引 0 处。
向右,向左
不动,不动
示例 3:
输入:steps = 4, arrLen = 2 输出:8
提示:
1 <= steps <= 500
1 <= arrLen <= 10^6
通过次数2,589提交次数6,511
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/number-of-ways-to-stay-in-the-same-place-after-some-steps
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
拿到这个题想一下我就不信长度有106这么长,看到steps就知道了,最长也就是500,我们这时候可以考虑一下三种情况:steps>arrLen , steps<arrLen,steps = arrLen,我们要拿到的最佳状态也就是steps和arrLen中比较小的数当长度(如果arrLen <= steps没啥争议,arrLen=arrLen,反之他根本走不到steps+1这个位置)。先考虑下时间复杂度,上次因为这个错了四次,嘤嘤嘤。所以要用min(steps+1,arrLen)。
class Solution {
public:
int numWays(int steps, int arrLen) {
long long mod = 1000000007;
arrLen = min(steps