【ZZULIOJ】1126: 布尔矩阵的奇偶性

ZZULIOJ题解

1126: 布尔矩阵的奇偶性

题目描述
一个布尔方阵具有奇偶均势特性,当且仅当 每行、每列总和为偶数,即包含偶数个1。如下面这个4*4的矩阵就具有奇偶均势特性:
1 0 1 0
0 0 0 0
1 1 1 1
0 1 0 1
编写程序,读入一个n阶方阵并检查它是否具有奇偶均势特性。如果没有,你的程序应当再检查一下它是否可以通过修改一位(把0改为1,把1改为0)来使它具有奇偶均势特性;如果不可能,这个矩阵就被认为是破坏了。

输入
第一行是一个整数n ( 0< n < 100 ),代表该方阵的阶数。然后输入n 行,每行n个整数(0或1)。

输出
如果矩阵是布尔矩阵,输出“OK”;如果能通过只修改该矩阵中的一位来使它成为布尔矩阵,则输出“Change bit(i,j)”,这里i和j是被修改的元素的行与列(行,列号从0开始);否则,输出“Corrupt”。

样例输入

4
1 0 1 0
0 0 0 0
1 1 1 1
0 1 0 1

样例输出

OK

依旧是矩阵问题,二维数组的灵活使用,循环条件判断即可。

代码

#include<stdio.h>
#define N 101
//P函数用来判断符合条件与否 
int P(int a[N][N],int n){   
	int i,j;
	for(i=0;i<n;i++){
	   int sum=0;
	for(j=0;j<n;j++)
		sum+=a[i][j];
	if(sum%2!=0)
		return 0;//如果每行1的个数不为偶数,说明不符合 
	}
	for(j=0;j<n;j++){   
	int sum=0;
	for(i=0;i<n;i++)
		sum+=a[i][j];
	if(sum%2!=0)
		return 0;//如果每列1的个数不为偶数,说明不符合
	}
	return 1;//如果都符合,则返回1 
}
//C函数用来判断改变一次能否符合条件 
void C(int a[N][N],int n){
	int i,j,k=0,sum=0;
	for(i=0;i<n&&k!=1;i++){
	for(j=0;j<n&&k!=1;j++){
		//对每个位置进行变换 
		if(a[i][j]==0)
			a[i][j]=1;	
		else if(a[i][j]==1)
			a[i][j]=0;
		//如果变换之后符合条件了 
		if(P(a,n)){
			printf("Change bit(%d,%d)",i,j); 
			k=1;//找到了,结束以后的循环 
		}
		//此处是还原上一步的变换 
		if(a[i][j]==0)
			a[i][j]=1;	
		else if(a[i][j]==1)
			a[i][j]=0;
		}
	}
	//如果此处变化不成符合条件的矩阵 
	if(k!=1)
		printf("Corrupt");
}	
int main(){
	int x,i,j,a[N][N];
	//定义方阵a和阶数x 
	scanf("%d",&x);
	//输入x阶方阵 
	for(i=0;i<x;i++)
	for(j=0;j<x;j++)
	scanf("%d",&a[i][j]);
	//如果具有奇偶均势特性
	if(P(a,x))
		printf("OK");
	else//否则判断其是否能改变为具有奇偶均势特性 
		C(a,x);	
}


### ZZULIOJ 1126 布尔矩阵奇偶性解题思路 对于给定的一个n阶布尔方阵,要判断其是否具有奇偶均势特性,即每行、每列总和为偶数[^3]。如果该矩阵不满足此条件,则进一步检查能否通过改变其中一个元素(0变为1或1变为0),使得整个矩阵达到奇偶均势。 #### 判断原始矩阵是否符合条件 遍历整个矩阵计算各行各列的1的数量,并记录下这些数量中为奇数的情况。若所有行列都含有偶数个1,则直接输出“OK”。 #### 尝试修正一次错误的可能性 当发现存在某一行或某一列为奇数时,考虑是否存在唯一的位置可以调整从而让所有的行与列都能变成偶数之和。具体做法如下: - 统计有多少行以及多少列出现了奇数次的1; - 如果恰好只有一个位置能够同时影响到两个方向上由奇转偶,则说明可以通过更改这一个位来修复矩阵; - 输出需要变更的具体坐标`bit(i, j)`,其中i表示第几行,j表示第几列,注意这里的索引是从0开始编号的。 #### 处理无法修复的情形 经过上述两步处理之后仍然未能得到满意的结果,则表明当前输入数据已经损坏严重,无法简单地通过单点变换恢复成合法状态,此时应返回字符串“Corrupt”。 ```cpp #include <iostream> using namespace std; int main() { int n; cin >> n; bool matrix[n][n]; int rowSum[n], colSum[n]; // 初始化rowSum 和 colSum 数组 for(int i = 0; i < n; ++i){ rowSum[i]=colSum[i]=0; } // 输入矩阵的同时统计各行各列中的'1' for(int i=0;i<n;++i){ for(int j=0;j<n;++j){ cin>>matrix[i][j]; rowSum[i]+=matrix[i][j]; colSum[j]+=matrix[i][j]; } } int oddRow=-1,oddCol=-1,rowCount=0,colCount=0; // 记录哪些行/列有奇数个‘1’及其总数目 for(int i=0;i<n;++i){ if(rowSum[i]%2!=0){ rowCount++; oddRow=i;} if(colSum[i]%2!=0){ colCount++; oddCol=i;} } // 根据不同情况给出相应结果 if((rowCount==0)&&(colCount==0)){ cout<<"OK"; }else if ((rowCount<=1)&&(colCount<=1)){ cout << "Change bit("<<oddRow<<","<<oddCol<<")"; } else{ cout <<"Corrupt"; } return 0; } ```
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

 江海寄余生 

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值