线性代数复习CH3:n维向量

3.n维向量

3.1 向量及其线性运算

3.1.1 向量的概念

定义:由数 ( a 1 , a 2 , . . . , a n ) (a_1,a_2,...,a_n) (a1,a2,...,an)组成的有序数组,称为n维向量,简称为向量。向量通常由斜体的希腊字母 α , β , γ \alpha,\beta,\gamma α,β,γ表示。

如,行向量: α = ( a 1 , a 2 , . . . , a n ) \alpha =(a_1,a_2,...,a_n) α=(a1,a2,...,an)

  • 可以将矩阵的每一行看做一个行向量,每一列看做一个列向量。

  • 如果向量的所有的元素都是0,那么是0向量。

向量相等的概念:同型、对应元素相等(横着写,竖着写无所谓)

向量的长度 α = ( a 1 , a 2 , . . . , a n ) , 数值 a 1 2 + a 2 2 + . . . + a n 2 \alpha=(a_1,a_2,...,a_n),数值\sqrt{a_1^2+a_2^2+...+a_n^2} α=(a1,a2,...,an),数值a12+a22+...+an2 称为向量 α \alpha α的长度或者范数或者模,记为 ∣ ∣ α ∣ ∣ ||\alpha|| ∣∣α∣∣

——二维向量长度的推广

  • 如果长度为0,那么这个向量一定是0向量。——0向量的充要条件:长度为0
  • 单位向量: ∣ ∣ α ∣ ∣ = 1 ||\alpha|| = 1 ∣∣α∣∣=1,那么是单位向量

在这里插入图片描述

3.1.2 n维向量的线性运算
3.1.2.1 线性运算

设向量 α = ( a 1 , a 2 , . . . , a n ) , β = ( b 1 , b 2 , . . . , b n ) \alpha =(a_1,a_2,...,a_n),\beta = (b_1,b_2,...,b_n) α=(a1,a2,...,an),β=(b1,b2,...,bn)

  • 加法:对应元素相加
  • 减法:对应元素相减
  • 数乘:每个元素乘以k

线性运算满足的8条运算规律:

image-20220725221447045

3.1.2.2 线性组合

线性组合的定义:设向量 β , α 1 , α 2 , . . . , α m \beta,\alpha_1,\alpha_2,...,\alpha_m β,α1,α2,...,αm,若存在一组数 k 1 , k 2 , . . , k m k_1,k_2,..,k_m k1,k2,..,km使 β = k 1 α 1 + k 2 α 2 + . . . + k m α m \beta=k_1\alpha_1+k_2\alpha_2+...+k_m\alpha_m β=k1α1+k2α2+...+kmαm,则称向量 β \beta β可由向量 α 1 , α 2 , . . . , α m \alpha_1,\alpha_2,...,\alpha_m α1,α2,...,αm线性表示,或者称** β \beta β α 1 , α 2 , . . . , α m \alpha_1,\alpha_2,...,\alpha_m α1,α2,...,αm的线性组合**。

例:设 α 1 = ( 1 , 2 , − 1 ) , α 2 = ( 2 , − 3 , 1 ) , α 3 ( 4 , 1 , − 1 ) \alpha_1=(1,2,-1),\alpha_2=(2,-3,1),\alpha_3(4,1,-1) α1=(1,2,1),α2=(2,3,1),α3(4,1,1),证明: α 3 \alpha_3 α3 α 1 , α 2 \alpha_1,\alpha_2 α1,α2的线性组合

α 3 = k 1 α 1 + k 2 α 2 \alpha_3=k_1\alpha_1+k_2\alpha_2 α3=k1α1+k2α2,即:

( 4 , 1 , − 1 ) = k 1 ( 1 , 2 , − 1 ) + k 2 ( 2 , − 3 , 1 ) (4,1,-1) = k_1(1,2,-1)+k_2(2,-3,1) (4,1,1)=k1(1,2,1)+k2(2,3,1)

得:

在这里插入图片描述

3.1.2.3 向量组的等价

向量组的等价:设有两个向量组(I): α 1 , α 2 , . . . , α r \alpha_1,\alpha_2,...,\alpha_r α1,α2,...,αr ;(II) β 1 , β 2 , . . . , β s \beta_1,\beta_2,...,\beta_s β1,β2,...,βs

若向量组(I)中每个向量都可以由向量组(II)线性表示,则称向量组(I)可以由向量组(II)线性表示;若向量组(I)与向量组(II)可以互相线性表示,则称向量组(I)与向量组(II)等价。

向量组的等价具有:自反性对称性传递性

3.1.3 向量组的线性相关性
3.1.3.1 定义

设向量组 α 1 , α 2 , . . . , α m \alpha_1,\alpha_2,...,\alpha_m α1,α2,...,αm,若存在一组不全为0的数 k 1 , k 2 , . . . , k m k_1,k_2,...,k_m k1,k2,...,km使:
k 1 α 1 + k 2 α 2 + . . . + k m α m = 0 k_1\alpha_1+k_2\alpha_2+...+k_m\alpha_m=0 k1α1+k2α2+...+kmαm=0
则称向量组 α 1 , α 2 , . . . , α m \alpha_1,\alpha_2,...,\alpha_m α1,α2,...,αm线性相关,否则 α 1 , α 2 , . . . , α m \alpha_1,\alpha_2,...,\alpha_m α1,α2,...,αm线性无关

note:

一个向量时:

  • 若该向量是零向量,则它线性相关;
  • 若该向量是非零向量,那么他线性无关

k α = 0 , α ≠ 0 , ⇒ k = 0 k\alpha=0,\alpha\neq 0,\Rightarrow k=0 kα=0,α=0,k=0

两个向量:

  • 两个向量的对应分量成比例

含有零向量:

任意一个含有零向量的向量组是线性相关的。

在这里插入图片描述

3.1.3.2 相关性的判定
(1)线性相关的和线性组合的关系定理

定理1:向量组 α 1 , α 2 , . . . , α m ( m ≥ 2 ) \alpha_1,\alpha_2,...,\alpha_m(m\geq 2) α1,α2,...,αm(m2)线性相关充要条件是其中至少有一个向量可由其余 m − 1 m-1 m1个向量线性表示

定理2:设向量组 α 1 , α 2 , . . . , α m \alpha_1,\alpha_2,...,\alpha_m α1,α2,...,αm线性无关,而向量组 β , α 1 , α 2 , . . . , α m \beta, \alpha_1,\alpha_2,...,\alpha_m β,α1,α2,...,αm线性相关 β \beta β可由 α 1 , α 2 , . . . , α m \alpha_1,\alpha_2,...,\alpha_m α1,α2,...,αm线性表示且唯一

线性表示:反证法可证明
k β + k 1 α 1 + k 2 α 2 + . . . + k m α m = 0 ⇒ k β = − ( k 1 α 1 + k 2 α 2 + . . . + k m α m ) k\beta+k_1\alpha_1+k_2\alpha_2+...+k_m\alpha_m=0\Rightarrow k\beta=-(k_1\alpha_1+k_2\alpha_2+...+k_m\alpha_m) kβ+k1α1+k2α2+...+kmαm=0kβ=(k1α1+k2α2+...+kmαm)
k k k为0,那么 k β k\beta kβ为0,得到 k 1 α 1 + k 2 α 2 + . . . + k m α m = 0 k_1\alpha_1+k_2\alpha_2+...+k_m\alpha_m=0 k1α1+k2α2+...+kmαm=0,与 α 1 , α 2 , . . . , α m \alpha_1,\alpha_2,...,\alpha_m α1,α2,...,αm线性无关矛盾。

所以 k ≠ 0 k\neq 0 k=0,故: β = − k 1 k α 1 − k 2 k α 2 + . . . + − k m k α m \beta=-\frac{k_1}{k}\alpha_1-\frac{k_2}{k}\alpha_2+...+-\frac{k_m}{k}\alpha_m β=kk1α1kk2α2+...+kkmαm,即 β \beta β可由 α 1 , α 2 , . . . , α m \alpha_1,\alpha_2,...,\alpha_m α1,α2,...,αm线性表示


唯一性:标准证法:

image-20220726112913562
(2)相关性的判定定理

定理3:在一个向量组中,若有一个部分向量组线性相关,那么整个向量组也必定线性相关;反之不对。

逆否命题:任何一个线性无关的向量组的任何非空的部分向量都线性无关

定理4:m个n维向量 α i = ( a i 1 , a i 2 , . . . , a i n ) ( i = 1 , 2 , . . . , m ) \alpha_i=(a_{i1},a_{i2},...,a_{in})(i=1,2,...,m) αi=(ai1,ai2,...,ain)(i=1,2,...,m)线性相关的充要条件是由 α i ( i = 1 , 2 , . . . , m ) \alpha_i(i=1,2,...,m) αi(i=1,2,...,m)构成的矩阵
A = [ α 1 α 2 . . . α m ] = [ a 11 a 12 … a 1 n a 21 a 22 … a 2 n . . . a m 1 a m 2 … a m n ] A=\begin{bmatrix} \alpha_1 \\ \alpha_2 \\.\\. \\. \\\alpha_m\end{bmatrix}= \begin{bmatrix} a_{11}&a_{12}&…&a_{1n} \\ a_{21}&a_{22}&…&a_{2n}\\.\\. \\.\\ a_{m1}&a_{m2}&…&a_{mn}\end{bmatrix} A= α1α2...αm = a11a21...am1a12a22am2a1na2namn
r ( A ) < m r(A)<m r(A)<m

证明:

⇒ \Rightarrow α 1 , α 2 , . . . , α m \alpha_1,\alpha_2,...,\alpha_m α1,α2,...,αm线性相关,

由定理1知,必有某个向量(不妨设 α m \alpha_m αm)可由其余m-1个向量线性表示,即: α m = k 1 α 1 + . . . + k m − 1 α m − 1 \alpha_m=k_1\alpha_1+...+k_{m-1}\alpha_{m-1} αm=k1α1+...+km1αm1
A = [ α 1 α 2 . . . α m ] = [ a 11 a 12 … a 1 n a 21 a 22 … a 2 n . . . a m 1 a m 2 … a m n ] A=\begin{bmatrix} \alpha_1 \\ \alpha_2 \\.\\. \\. \\\alpha_m\end{bmatrix}= \begin{bmatrix} a_{11}&a_{12}&…&a_{1n} \\ a_{21}&a_{22}&…&a_{2n}\\.\\. \\.\\ a_{m1}&a_{m2}&…&a_{mn}\end{bmatrix} A= α1α2...αm = a11a21...am1a12a22am2a1na2namn
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-sNrQvkM8-1660448771772)(https://cdn.jsdelivr.net/gh/Holmes233666/blogImage@main/img/image-20220726155719684.png)]

例子:讨论 α 1 = ( 1 , 2 , − 1 ) , α 2 = ( 2 , − 3 , 1 ) , α 3 = ( 4 , 1 , − 1 ) \alpha_1=(1,2,-1),\alpha_2=(2,-3,1),\alpha_3=(4,1,-1) α1=(1,2,1),α2=(2,3,1),α3=(4,1,1)的相关性。

法1:组合式

设: α 3 = k 1 α 1 + k 2 α 2 \alpha_3=k_1\alpha_1+k_2\alpha_2 α3=k1α1+k2α2

求解即可,得:
α 3 = 2 α 1 + α 2 \alpha_3=2\alpha_1+\alpha_2 α3=2α1+α2
法2:定义证明,组合系数不全为零

设: k 1 α 1 + k 2 α 2 + k 3 α 3 = 0 k_1\alpha_1+k_2\alpha_2+k_3\alpha_3=0 k1α1+k2α2+k3α3=0

判定系数不全为0.

法3:将向量排成矩阵,由矩阵的秩确定

  • 推论1: m > n m>n m>n时,m个n维向量线性相关

    r ( A ) < m i n ( m , n ) = n < m r(A)<min(m,n)=n<m r(A)<min(m,n)=n<m,所以一定线性相关

  • 推论2:任意m个n维向量线性无关的充要条件是由他们构成的矩阵 A = A m × n A=A_{m\times n} A=Am×n r ( A ) = m r(A)=m r(A)=m

  • 推论3:任意n个n维向量线性无关的充要条件是由他们构成的方阵A的行列式不等于0,或 r ( A ) = n r(A)=n r(A)=n

  • 推论4:任意n个n维向量线性相关的充要条件是由他们构成的方阵行列式为0,或者 r ( A ) < n r(A)<n r(A)<n

定理5:若m个r维向量 α i = ( a i 1 , a i 2 , . . . , a i r ) ( i = 1 , 2 , . . , m ) \alpha_i=(a_{i1},a_{i2},...,a_{ir})(i=1,2,..,m) αi=(ai1,ai2,...,air)(i=1,2,..,m)线性无关,则对应的m个 r + 1 r+1 r+1维向量 β i = ( a i 1 , a i 2 , . . . , a i r , a i r + 1 ) ( i = 1 , 2 , . . , m ) \beta_i=(a_{i1},a_{i2},...,a_{ir},a_{ir+1})(i=1,2,..,m) βi=(ai1,ai2,...,air,air+1)(i=1,2,..,m)仍线性无关。

用语言叙述为:线性无关的向量组,添加分量后仍线性无关。

在这里插入图片描述

3.2 向量的极大无关组和秩

α 1 , α 2 , . . . , α m \alpha_1,\alpha_2,...,\alpha_m α1,α2,...,αm 线性相关

​ |

​ | 假设 α m \alpha_m αm可由前面的m-1个向量线性表示,去掉 α m \alpha_m αm

​ |

α 1 , α 2 , . . . , α m − 1 \alpha_1,\alpha_2,...,\alpha_{m-1} α1,α2,...,αm1

​ |

​ | 假设 α m − 1 \alpha_{m-1} αm1可由前面的m-2个向量线性表示,去掉 α m − 1 \alpha_{m-1} αm1

​ |

α 1 , α 2 , . . . , α i \alpha_1,\alpha_2,...,\alpha_{i} α1,α2,...,αi——直到这组向量线性无关为止

这一组就是向量组的极大无关组。

3.2.1 向量的极大无关组的定义

定义:设向量组T的部分向量组 α 1 , α 2 , . . . , α r \alpha_1,\alpha_2,...,\alpha_r α1,α2,...,αr满足:

  • α 1 , α 2 , . . . , α r \alpha_1,\alpha_2,...,\alpha_r α1,α2,...,αr线性无关
  • T中的向量均可由 α 1 , α 2 , . . . , α r \alpha_1,\alpha_2,...,\alpha_r α1,α2,...,αr线性表示。或者T中的任意向量 α \alpha α,可使 α , α 1 , α 2 , . . . , α r \alpha,\alpha_1,\alpha_2,...,\alpha_r α,α1,α2,...,αr线性相关。

则称 α , α 1 , α 2 , . . . , α r \alpha,\alpha_1,\alpha_2,...,\alpha_r α,α1,α2,...,αr为向量组T的一个极大线性无关组,简称极大无关组。

极大无关组的两层含义:

  • 无关性
  • 极大性

显然有:

  • 线性无关向量组的极大无关组就是其本身
  • 向量组与其极大无关组等价
  • 同一个向量组的极大无关组不唯一,但他们之间是的等价的

example:

在这里插入图片描述

极大无关组所含向量是否相同?

3.2.1 极大无关组的性质

定理1:设有两个n维向量:

  • α 1 , α 2 , . . . , α r \alpha_1,\alpha_2,...,\alpha_r α1,α2,...,αr
  • β 1 , β 2 , . . . , β s \beta_1,\beta_2,...,\beta_s β1,β2,...,βs

若向量组①线性无关,且可由向量组②线性表示,则 r ≤ s r\leq s rs

证明:
A = [ α 1 α 2 . . . α r ] = [ a 11 a 12 … a 1 n a 21 a 22 … a 2 n . . . a r 1 a r 2 … a r n ] , B = [ β 1 β 2 . . . β s ] = [ b 11 b 12 … b 1 n b 21 b 22 … b 2 n . . . b s 1 b s 2 … b s n ] , c = [ β 1 β 2 . . . β s α 1 α 2 . . . α r ] → [ β 1 β 2 . . . β s 0 0 . . . 0 ] A=\begin{bmatrix} \alpha_1 \\ \alpha_2 \\.\\. \\. \\\alpha_r\end{bmatrix}= \begin{bmatrix} a_{11}&a_{12}&…&a_{1n} \\ a_{21}&a_{22}&…&a_{2n}\\.\\. \\.\\ a_{r1}&a_{r2}&…&a_{rn}\end{bmatrix}, B=\begin{bmatrix} \beta_1 \\ \beta_2 \\.\\. \\. \\\beta_s\end{bmatrix}= \begin{bmatrix} b_{11}&b_{12}&…&b_{1n} \\ b_{21}&b_{22}&…&b_{2n}\\.\\. \\.\\ b_{s1}&b_{s2}&…&b_{sn}\end{bmatrix}, c=\begin{bmatrix} \beta_1 \\ \beta_2 \\.\\. \\. \\\beta_s\\\alpha_1 \\ \alpha_2 \\.\\. \\. \\\alpha_r\end{bmatrix}\rightarrow \begin{bmatrix} \beta_1 \\ \beta_2 \\.\\. \\. \\\beta_s\\0 \\ 0 \\.\\. \\. \\0\end{bmatrix} A= α1α2...αr = a11a21...ar1a12a22ar2a1na2narn ,B= β1β2...βs = b11b21...bs1b12b22bs2b1nb2nbsn ,c= β1β2...βsα1α2...αr β1β2...βs00...0
由上可知:
r = r ( A ) ≤ r ( c ) ≤ s r=r(A)\leq r(c)\leq s r=r(A)r(c)s
得证。

  • 推论1:若向量组 α , α 1 , α 2 , . . . , α r \alpha,\alpha_1,\alpha_2,...,\alpha_r α,α1,α2,...,αr可由向量组 β 1 , β 2 , . . . , β s \beta_1,\beta_2,...,\beta_s β1,β2,...,βs线性表示,且r>s,则向量组 α , α 1 , α 2 , . . . , α r \alpha,\alpha_1,\alpha_2,...,\alpha_r α,α1,α2,...,αr线性相关。

​ 反证法即可证明。

  • 推论2:任意两个线性无关的等价向量组所含的向量个数相等。

    r ≤ s ≤ r r\leq s\leq r rsr r = = s r==s r==s

定理2:一个向量组的任意两个极大无关组所含的向量个数一定相等。

3.2.3 向量组的秩

定义:向量组 α 1 , α 2 , . . . , α m \alpha_1,\alpha_2,...,\alpha_m α1,α2,...,αm极大无关组所含的向量个数称为向量的极大无关组的秩,记为 r ( α 1 , α 2 , . . . , α r ) r(\alpha_1,\alpha_2,...,\alpha_r) r(α1,α2,...,αr)

注:(1)线性无关的向量组的秩 = 向量的个数

​ (2)向量组线性无关 ⇔ \Leftrightarrow 秩 = 向量个数

定理3:若 α 1 , α 2 , . . . , α m \alpha_1,\alpha_2,...,\alpha_m α1,α2,...,αm可由 β 1 , β 2 , . . . , β s \beta_1,\beta_2,...,\beta_s β1,β2,...,βs线性表示,则 r ( α 1 , α 2 , . . . , α m ) ≤ r ( β 1 , β 2 , . . . , β s ) r(\alpha_1,\alpha_2,...,\alpha_m)\leq r(\beta_1,\beta_2,...,\beta_s) r(α1,α2,...,αm)r(β1,β2,...,βs)

证明:
{ α 1 , α 2 , . . . , α m → α i , . . . , a r 是极大无关组 β 1 , β 2 , . . . , β s → β i , . . . , β t 是极大无关组 ⇒ r ≤ t \begin{cases}\alpha_1,\alpha_2,...,\alpha_m\rightarrow \alpha_i,...,a_r是极大无关组\\ \beta_1,\beta_2,...,\beta_s\rightarrow \beta_i,...,\beta_t是极大无关组 \end{cases}\Rightarrow r\leq t {α1,α2,...,αmαi,...,ar是极大无关组β1,β2,...,βsβi,...,βt是极大无关组rt
推论:等价的向量组有相同的秩。

必须注意:有相同的秩的向量组不一定等价。

与矩阵区别:矩阵等价,那么秩相同;矩阵秩相同,那么等价

在这里插入图片描述

在这里插入图片描述

3.2.4 向量组秩的求法

行秩:矩阵行向量的秩

列秩:矩阵的列向量组的秩

定理四:矩阵的行秩与列秩相等,为矩阵的秩

推论:向量组的秩与该向量构成的矩阵的秩相等。

3.2.5 极大无关组的求法

列摆行变换法:

列摆行变换将矩阵变为梯形阵后,秩即求出来了。这时只需要在每个高度取一个向量,相同的高度取左边,即可得到极大无关组。

在这里插入图片描述

注意:行摆行变换不对!

只求秩时,行摆也可以。


用向量去求解矩阵中的问题:

证明: r ( A m × s S s × n ) ≤ m i n { r ( A ) , r ( B ) } r(A_{m\times s}S_{s\times n})\leq min\{r(A), r(B)\} r(Am×sSs×n)min{r(A),r(B)}

A m × s B s × n = C , A = ( α 1 , α 2 , . . . , α s ) , C = ( γ 1 , γ 2 , . . , γ n ) A_{m\times s}B_{s\times n}=C, A=(\alpha_1,\alpha_2,...,\alpha_s),C=(\gamma_1,\gamma_2,..,\gamma_n) Am×sBs×n=C,A=(α1,α2,...,αs),C=(γ1,γ2,..,γn)

在这里插入图片描述

image-20220726215829468

3.3 向量空间

3.3.1 向量空间的概念

定义1:设V是n维向量的非空集合,称V对于向量加法数乘两种运算封闭,如果 ∀ α , β ∈ V , k ∈ R , ⇒ α + β ∈ V , k α ∈ V \forall\alpha,\beta\in V,k\in R,\Rightarrow\alpha+\beta\in V,k\alpha\in V α,βV,kR,α+βV,kαV

定义2:设V是n维的非空集合,如果V对于向量加法和数乘两种运算封闭,则称集合V为n维向量空间,简称向量空间。

image-20220726222227378
L ( α 1 , α 2 , . . , α m ) = V = { α = k 1 α 1 + k 2 α 2 + . . . + k m α m } L(\alpha_1,\alpha_2,..,\alpha_m)=V=\{\alpha=k_1\alpha_1 + k_2\alpha_2+...+k_m\alpha_m\} L(α1,α2,..,αm)=V={α=k1α1+k2α2+...+kmαm}
子空间:设W、V为向量空间,若W ⊂ \subset V,则称W是V的子空间。

3.3.2 向量空间的基和维数

定义3:若n维向量空间V中的向量组 α 1 , α 2 , . . . , α m \alpha_1,\alpha_2,...,\alpha_m α1,α2,...,αm满足:

  • α 1 , α 2 , . . . , α m \alpha_1,\alpha_2,...,\alpha_m α1,α2,...,αm线性无关
  • V中的向量均可由 α 1 , α 2 , . . . , α m \alpha_1,\alpha_2,...,\alpha_m α1,α2,...,αm线性表示

则称 α 1 , α 2 , . . . , α m \alpha_1,\alpha_2,...,\alpha_m α1,α2,...,αm为V的一个

定义4:基中所含的向量个数称为向量空间的维数

若将向量空间看做向量组,则基就是向量组的极大无关组,维数就是向量组的秩。因此,基与维数的求法就是向量组的极大无关组和秩的求法。

在这里插入图片描述

3.3.3 向量在基下的坐标

定义4:设 ϵ 1 , ϵ 2 , . . . , ϵ r \epsilon_1,\epsilon_2,...,\epsilon_r ϵ1,ϵ2,...,ϵr是向量空间的基, α ∈ V \alpha\in V αV,且 α = k 1 ϵ 1 + k 2 ϵ 2 + . . . + k r ϵ r \alpha=k_1\epsilon_1+k_2\epsilon_2+...+k_r\epsilon_r α=k1ϵ1+k2ϵ2+...+krϵr,则称系数 k 1 , k 2 , . . , k r k_1,k_2,..,k_r k1,k2,..,kr α \alpha α在基 ϵ 1 , ϵ 2 , . . . , ϵ r \epsilon_1,\epsilon_2,...,\epsilon_r ϵ1,ϵ2,...,ϵr

下的坐标。

  • 向量的坐标在一个确定的基下是唯一的

  • 向量空间的基不唯一,因此不同的基下的坐标也不一样

  • 向量在基下的坐标如何求?

    • 待定系数法
    • 矩阵方程法(recommend)

3.4 向量组的正交性

3.4.1 向量的内积

定义1:设有向量 α = ( a 1 , a 2 , . . . , a n ) , β = ( b 1 , b 2 , . . . , b n ) , \alpha=(a_1,a_2,...,a_n),\beta=(b_1,b_2,...,b_n), α=(a1,a2,...,an),β=(b1,b2,...,bn),
a 1 b 1 + a 2 b 2 + . . . + a n b n a_1b_1+a_2b_2+...+a_nb_n a1b1+a2b2+...+anbn
称为向量 α \alpha α β \beta β的内积,记做 ( α , β ) (\alpha,\beta) (α,β)

  • ( α , β ) = α β T (\alpha,\beta)=\alpha\beta^T (α,β)=αβT
  • 交换律
  • 数乘
  • 分配律 ( α + β , γ ) = ( α , γ ) + ( β , γ ) (\alpha+\beta,\gamma)=(\alpha,\gamma)+(\beta,\gamma) (α+β,γ)=(α,γ)+(β,γ)
  • ( α , α ) = a 1 2 + a 2 2 + . . . + a n 2 = ∣ ∣ α ∣ ∣ 2 (\alpha,\alpha)=a_1^2+a_2^2+...+a_n^2=||\alpha||^2 (α,α)=a12+a22+...+an2=∣∣α2
3.4.2 向量的单位化

∣ ∣ 1 ∣ ∣ α ∣ ∣ α ∣ ∣ = 1 ∣ ∣ α ∣ ∣ ∣ ∣ α ∣ ∣ = 1 ||\frac{1}{||\alpha||}\alpha||=\frac{1}{||\alpha||}||\alpha||=1 ∣∣∣∣α∣∣1α∣∣=∣∣α∣∣1∣∣α∣∣=1

1 ∣ ∣ α ∣ ∣ α \frac{1}{||\alpha||}\alpha ∣∣α∣∣1α为单位向量

3.4.3 向量的正交性
3.4.3.1 正交向量组的定义

定义2:若 ( α , β ) = 0 (\alpha,\beta)=0 (α,β)=0,则称向量 α \alpha α与向量 β \beta β正交【0向量和任何向量正交】

定义3:如果m个n维非零向量 α 1 , α 2 , . . . , α m \alpha_1,\alpha_2,...,\alpha_m α1,α2,...,αm两两正交,即满足 ( α i , α j ) = 0 , ( i ≠ j ) (\alpha_i,\alpha_j)=0,(i\neq j) (αi,αj)=0,(i=j)则称向量组 α 1 , α 2 , . . . , α m \alpha_1,\alpha_2,...,\alpha_m α1,α2,...,αm为正交向量组,简称正交组。
e 1 = ( 1 , 0 , . . . , 0 ) , e 2 = ( 0 , 1 , . . . , 0 ) , . . . , e n = ( 0 , 0 , . . . , 1 ) e_1=(1,0,...,0),e_2=(0,1,...,0),...,e_n=(0,0,...,1) e1=(1,0,...,0),e2=(0,1,...,0),...,en=(0,0,...,1)
为正交组。也称为单位正交组或者标准正交组

3.4.3.2 正交向量组的性质

定理:设 α 1 , α 2 , . . . , α m \alpha_1,\alpha_2,...,\alpha_m α1,α2,...,αm为正交向量组,则 α 1 , α 2 , . . . , α m \alpha_1,\alpha_2,...,\alpha_m α1,α2,...,αm线性无关。

在这里插入图片描述

  • 线性无关的向量组是否一定正交?——否
  • 能否化为正交组?——是
3.4.3.4 正交化

在这里插入图片描述

  • α 1 , α 2 , . . . , α m \alpha_1,\alpha_2,...,\alpha_m α1,α2,...,αm β 1 β 2 , . . . , β m \beta_1\beta_2,...,\beta_m β1β2,...,βm等价

  • β \beta β是正交组——计算证明

  • 正交向量组再单位化,得到单位正交向量组

3.4.4 正交矩阵
3.4.4.1 正交矩阵的定义

定义4:若n阶方阵A满足 A A T = E AA^T=E AAT=E,则称A为n阶正交矩阵

性质:

  • 正交矩阵的行列式为1
  • 若A是正交矩阵,那么 A T A^T AT A − 1 A^{-1} A1也是正交矩阵
  • 若A,B是n阶正交阵,那么AB与BA也是正交矩阵
3.4.4.2 正交矩阵的判定

定理:矩阵 A = ( a i j ) n × n A=(a_{ij})_{n\times n} A=(aij)n×n为正交矩阵 ⇔ \Leftrightarrow A的行(列)向量为单位正交向量组

image-20220726235155699

证明正交矩阵:

  • 定义证明
  • 定理证明
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Blanche117

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值