利用扩展欧几里得求最小非负整数解

本文深入探讨了扩展欧几里得算法(exgcd),详细解释了如何使用此算法求解线性同余方程ax+by=gcd(a,b)的最小非负整数解。通过具体的代码示例,展示了exgcd算法的实现过程,包括递归求解最大公约数及求解特解的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

用 e x g c d 求 a x + b y = g c d ( a , b ) 用exgcd求ax+by=gcd(a,b) exgcdax+by=gcd(a,b)的最小非负整数解

#include<bits/stdc++.h>
using namespace std;
int exgcd(int a,int b,int &x,int &y){ //返回值是最大公约数. 
	if(b==0){
		x=1,y=0;
		return a;
	}
	int ans=exgcd(b,a%b,x,y); //b和a%b的最大公约数等于a和b的最大公约数 所以直接返回ans 
	int tmp=x;     //这里求解的是  bx1+(a%b)y1=gcd    ay1+b(x1-a/by1)=gcd   x=y1, y=x1-a/b*y1 
	x=y;
	y=tmp-a/b*y;
	return ans; 
}
int main(){
	int a,b,x,y,g;
	while(cin>>a>>b){
		 g=exgcd(a,b,x,y);
		 int b1=b/g;
		 printf("x=%d,b1=%d,g=%d\n",x,b1,g);  //原始的通解为   x=x0-(b/gcd)t  y=y0+(a/gcd)t 
		 x=(x%b1+b1)%b1;//这步是为了求x的最小非负整数解。     
		 					//令 g=(b/gcd)  当x为负数且x的绝对值比g小时显然加上一个g就行了 
		 y=(g-a*x)/b; 		当x为负数且x的绝对值比g大时,相当要要多加个g,这里用取余实现 比如 x=-10,g=4  
		 //x要加上3个g才行 ,先取余x%g=-2,这取余就相当于在加g,加到能被下一个g加变为非负整数 
		 printf("x=%d,y=%d\n",x,y);
	}
	return 0;
} 
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

酷酷的Herio

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值