AtCoder Beginner Contest 180 E - Traveling Salesman among Aerial Cities (状压DP)
题意:给定边权的计算方法,求 n n n个结点的最小曼哈顿回路花费。
思路:状压 d p dp dp。
令 d p [ i ] [ j ] dp[i][j] dp[i][j]为状态 i i i下从起点出发到 j j j的最小花费,这里的状态 i i i指从起点要经过的城市(不包括开始的起点)
最后答案即为: d p [ ( 1 < < n ) − 1 ] [ 0 ] dp[(1<<n)-1][0] dp[(1<<n)−1][0],假设起点为 0 0 0。
有状态方程: d p [ i ] [ j ] = m i n ( d p [ i ] [ j ] , d p [ i − ( 1 < < j ) ] [ k ] + d i s ( k , j ) ) , ( i & ( 1 < < j ) > 0 ) dp[i][j]=min(dp[i][j],dp[i-(1<<j)][k]+dis(k,j)),(i\&(1<<j)>0) dp[i][j]=min(dp[i][j],dp[i−(1<<j)][k]+dis(k,j)),(i&(1<<j)>0)
初始化: d p [ i ] [ j ] = i n f , d p [ 0 ] [ 0 ] = 0 dp[i][j]=inf,dp[0][0]=0 dp[i][j]=inf,dp[0][0]=0。
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=17,M=(1<<17)+1,inf=0x3f3f3f3f,mod=1e9+7;
#define mst(a,b) memset(a,b,sizeof a)
#define lx x<<1
#define rx x<<1|1
#define reg register
#define PII pair<int,int>
#define fi first
#define se second
#define pb push_back
#define il inline
int n,x[N],y[N],z[N];
ll dp[M][N];
il ll d(int a,int b){
return abs(x[a]-x[b])+abs(y[a]-y[b])+max(0,z[b]-z[a]);
}
int main(){
scanf("%d",&n);
for(int i=0;i<n;i++){
scanf("%d%d%d",&x[i],&y[i],&z[i]);
}
mst(dp,0x3f);
dp[0][0]=0;
for(int i=1;i<(1<<n);i++){
for(int j=0;j<n;j++){
if((i>>j)&1){
for(int k=0;k<n;k++)
dp[i][j]=min(dp[i][j],dp[i-(1<<j)][k]+d(k,j));
}
}
}
printf("%lld\n",dp[(1<<n)-1][0]);
return 0;
}
总结:显然看 n n n的范围只有 17 17 17就能想到状态压缩 d p dp dp,重点在于状态转移方程和初始化问题。
h i n t : hint: hint:若求最小曼哈顿通路,则初始化为 d p [ 1 ] [ 0 ] = 0 dp[1][0]=0 dp[1][0]=0,这里的状态包括起点,然后求 m a x ( d p [ ( 1 < < n ) − 1 ] [ j ] ) , j ∈ [ 1 , n ) max(dp[(1<<n)-1][j]),j\in[1,n) max(dp[(1<<n)−1][j]),j∈[1,n)。