AtCoder Beginner Contest 180 E - Traveling Salesman among Aerial Cities

AtCoder Beginner Contest 180 E - Traveling Salesman among Aerial Cities (状压DP)


题意:给定边权的计算方法,求 n n n个结点的最小曼哈顿回路花费。

思路:状压 d p dp dp

d p [ i ] [ j ] dp[i][j] dp[i][j]为状态 i i i下从起点出发到 j j j的最小花费,这里的状态 i i i指从起点要经过的城市(不包括开始的起点)

最后答案即为: d p [ ( 1 < < n ) − 1 ] [ 0 ] dp[(1<<n)-1][0] dp[(1<<n)1][0],假设起点为 0 0 0

有状态方程: d p [ i ] [ j ] = m i n ( d p [ i ] [ j ] , d p [ i − ( 1 < < j ) ] [ k ] + d i s ( k , j ) ) , ( i & ( 1 < < j ) > 0 ) dp[i][j]=min(dp[i][j],dp[i-(1<<j)][k]+dis(k,j)),(i\&(1<<j)>0) dp[i][j]=min(dp[i][j],dp[i(1<<j)][k]+dis(k,j)),(i&(1<<j)>0)

初始化: d p [ i ] [ j ] = i n f , d p [ 0 ] [ 0 ] = 0 dp[i][j]=inf,dp[0][0]=0 dp[i][j]=inf,dp[0][0]=0

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=17,M=(1<<17)+1,inf=0x3f3f3f3f,mod=1e9+7;
#define mst(a,b) memset(a,b,sizeof a)
#define lx x<<1
#define rx x<<1|1
#define reg register
#define PII pair<int,int>
#define fi first
#define se second
#define pb push_back
#define il inline
int n,x[N],y[N],z[N]; 
ll dp[M][N];
il ll d(int a,int b){
	return abs(x[a]-x[b])+abs(y[a]-y[b])+max(0,z[b]-z[a]);
}
int main(){
	scanf("%d",&n);
	for(int i=0;i<n;i++){
		scanf("%d%d%d",&x[i],&y[i],&z[i]);
	}
	mst(dp,0x3f);
	dp[0][0]=0;
	for(int i=1;i<(1<<n);i++){
		for(int j=0;j<n;j++){
			if((i>>j)&1){
				for(int k=0;k<n;k++)
					dp[i][j]=min(dp[i][j],dp[i-(1<<j)][k]+d(k,j));
			}
		}
	}
	printf("%lld\n",dp[(1<<n)-1][0]);
	return 0;
}

总结:显然看 n n n的范围只有 17 17 17就能想到状态压缩 d p dp dp,重点在于状态转移方程和初始化问题。

h i n t : hint: hint若求最小曼哈顿通路,则初始化为 d p [ 1 ] [ 0 ] = 0 dp[1][0]=0 dp[1][0]=0,这里的状态包括起点,然后求 m a x ( d p [ ( 1 < < n ) − 1 ] [ j ] ) , j ∈ [ 1 , n ) max(dp[(1<<n)-1][j]),j\in[1,n) max(dp[(1<<n)1][j]),j[1,n)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

酷酷的Herio

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值