1、递归
递归:简单来说就是自己调用自己。
案例:斐波那契数列
斐波那契数列的是这样一个数列:1、1、2、3、5、8、13、21、34…,即第一项 f(1) = 1,第二项 f(2) = 1…,第 n 项目为 f(n) = f(n-1) + f(n-2)。求第 n 项的值是多少。
(1)、递归函数功能
假设 f(n) 的功能是求第 n 项的值,代码如下:
int f(int n)
{
}
(2)、递归结束的条件
显然,由题目可知,当 n = 1 或者 n = 2 ,我们可以知道 f(1) = f(2) = 1。所以递归结束条件可以为 n <= 2 时,f(n)= 1。代码如下:
int f(int n)
{
if(n <= 2)
{
return 1;
}
}
(3)、找出函数的等价关系式
我们通过题目很容易就能够知道 f(n) = f(n-1) + f(n-2)。
所以最终代码如下:
int f(int n)
{
// 1.递归结束条件
if(n <= 2)
{
return 1;
}
// 2.等价关系式
return f(n-1) + f(n - 2);
}
2、回溯与DFS(深度优先搜索)
回溯算法也叫试探法,它是一种系统地搜索问题的解的方法。回溯算法的基本思想是:从一条路往前走,能进则进,不能进则退回来到上一步,换一条路再试。
DFS: dfs也会回溯,但是dfs会将已经访问过的点标记为不可再次连接,不会再撤销,从而使得可搜索路径越来越少,而回溯会在访问初标记,回溯时撤销。
DFS基本模型
void dfs(int step)
{
if()//结束的条件//达到题目要求例如迷宫终点组合个数等
{
return;
}
for (int i=1;i<=n;i++)
{
sun++//记录一些数据
a[i]=1//进行标记
dfs(step+1);//递归继续下一步
a[i]=0//回溯撤销标记
}
//返回
案例:走迷宫
题目描述
蒙蒙要找对象啦!但是对象在和他玩捉迷藏,现在有一个5*5的地图,蒙蒙就在(0,0)的位置,他的心上人就在(4,4)的位置,当然路上会有各种艰难险阻,现在说明一下规则。蒙蒙按照地图行动,一次走一步,而且他只能前后左右的移动,当然蒙蒙也不能穿越墙壁。地图上有两种图案,一种是‘0’表示可以走的路,另一种是‘1’表示不能走的墙
PS:(0,0)就是左上角,(4,4)就是右下角,都懂吧!
输入
输入一个5*5的矩阵表示地图,‘0’表示可以走的路,‘1’表示不能走的墙,蒙蒙就在(0,0)的位置,他的心上人就在(4,4)的位置
输出
输出蒙蒙到心上人那里最少要走多少步,若蒙蒙永远走不到心上人那里,则输出-1
样例输入
0 1 0 0 0
0 0 0 1 0
0 1 0 1 0
0 1 0 0 0
0 0 0 1 0
样例输出
8
DFS如下:
void dfs(int x,int y,int ans)
{
if(x==4&&y==4)//结束的条件达到迷宫终点
{
if(ans<min1)//min1初始值定义很大
{
min1=ans;
}
return;
}
for(int i=0; i<4; i++)
{
int tx,ty;
tx=x+dx[i];
ty=y+dy[i];
if(tx>=0&&tx<=4&&ty>=0&&ty<=4)
{
if(a[tx][ty]==0&&b[tx][ty]==0)
{
b[tx][ty]=1;//对走过的路径进行标记
dfs(tx,ty,ans+1);//继续下一步
b[tx][ty]=0;//回溯到上一步并取消标记
}
}
}
return;
}
完整代码如下:
#include<iostream>
using namespace std;
int dx[4]= {0,-1,0,1};
int dy[4]= {1,0,-1,0};
int a[10][10],b[10][10];
int min1=88888;
int ans;
void dfs(int x,int y,int ans)
{
if(x==4&&y==4)
{
if(ans<min1)
{
min1=ans;
}
return;
}
for(int i=0; i<4; i++)
{
int tx,ty;
tx=x+dx[i];
ty=y+dy[i];
if(tx>=0&&tx<=4&&ty>=0&&ty<=4)
{
if(a[tx][ty]==0&&b[tx][ty]==0)
{
b[tx][ty]=1;
dfs(tx,ty,ans+1);
b[tx][ty]=0;
}
}
}
return;
}
int main()
{
for(int i=0; i<5; i++)
{
for(int j=0; j<5; j++)
{
cin>>a[i][j];
}
}
b[0][0]=1;
dfs(0,0,0);
if(min1>0&&min1<8888)
cout<<min1;
else
cout<<-1<<"\n";
}
经典深搜
Description
在一个给定形状的棋盘(形状可能是不规则的)上面摆放棋子,棋子没有区别。要求摆放时任意的两个棋子不能放在棋盘中的同一行或者同一列,请编程求解对于给定形状和大小的棋盘,摆放k个棋子的所有可行的摆放方案C。
Input
输入含有多组测试数据。 每组数据的第一行是两个正整数,n k,用一个空格隔开,表示了将在一个n*n的矩阵内描述棋盘,以及摆放棋子的数目。 n
<= 8 , k <= n 当为-1 -1时表示输入结束。 随后的n行描述了棋盘的形状:每行有n个字符,其中 # 表示棋盘区域, .
表示空白区域(数据保证不出现多余的空白行或者空白列)。
Output
对于每一组数据,给出一行输出,输出摆放的方案数目C (数据保证C<2^31)。
Sample Input
2 1
#.
.#
4 4
…#
…#.
.#…
#…
-1 -1
Sample Output
2
1