递归、回溯和DFS(深度优先搜索)

1、递归

递归:简单来说就是自己调用自己。

案例:斐波那契数列

斐波那契数列的是这样一个数列:1、1、2、3、5、8、13、21、34…,即第一项 f(1) = 1,第二项 f(2) = 1…,第 n 项目为 f(n) = f(n-1) + f(n-2)。求第 n 项的值是多少。
(1)、递归函数功能
假设 f(n) 的功能是求第 n 项的值,代码如下:

int f(int n)
{
    
}

(2)、递归结束的条件
显然,由题目可知,当 n = 1 或者 n = 2 ,我们可以知道 f(1) = f(2) = 1。所以递归结束条件可以为 n <= 2 时,f(n)= 1。代码如下:

int f(int n)
{
    if(n <= 2)
    {
        return 1;
    }
}

(3)、找出函数的等价关系式

我们通过题目很容易就能够知道 f(n) = f(n-1) + f(n-2)。
所以最终代码如下:

int f(int n)
{
    // 1.递归结束条件
    if(n <= 2)
    {
        return 1;
    }
    // 2.等价关系式
    return f(n-1) + f(n - 2);
}

2、回溯与DFS(深度优先搜索)

回溯算法也叫试探法,它是一种系统地搜索问题的解的方法。回溯算法的基本思想是:从一条路往前走,能进则进,不能进则退回来到上一步,换一条路再试。
DFS: dfs也会回溯,但是dfs会将已经访问过的点标记为不可再次连接,不会再撤销,从而使得可搜索路径越来越少,而回溯会在访问初标记,回溯时撤销。
DFS基本模型


  void dfs(int step) 
  {
  		if()//结束的条件//达到题目要求例如迷宫终点组合个数等
  		{
  			return;
  		}
        for (int i=1;i<=n;i++)
        {
            sun++//记录一些数据
            a[i]=1//进行标记
            dfs(step+1);//递归继续下一步
            a[i]=0//回溯撤销标记
        }
        //返回

案例:走迷宫

题目描述

蒙蒙要找对象啦!但是对象在和他玩捉迷藏,现在有一个5*5的地图,蒙蒙就在(0,0)的位置,他的心上人就在(4,4)的位置,当然路上会有各种艰难险阻,现在说明一下规则。蒙蒙按照地图行动,一次走一步,而且他只能前后左右的移动,当然蒙蒙也不能穿越墙壁。地图上有两种图案,一种是‘0’表示可以走的路,另一种是‘1’表示不能走的墙
PS:(0,0)就是左上角,(4,4)就是右下角,都懂吧!

输入

输入一个5*5的矩阵表示地图,‘0’表示可以走的路,‘1’表示不能走的墙,蒙蒙就在(0,0)的位置,他的心上人就在(4,4)的位置

输出

输出蒙蒙到心上人那里最少要走多少步,若蒙蒙永远走不到心上人那里,则输出-1

样例输入

0 1 0 0 0
0 0 0 1 0
0 1 0 1 0
0 1 0 0 0
0 0 0 1 0

样例输出

8

DFS如下:

void dfs(int x,int y,int ans)
{
    if(x==4&&y==4)//结束的条件达到迷宫终点
    {
        if(ans<min1)//min1初始值定义很大
        {
            min1=ans;
        }
        return;
    }
    for(int i=0; i<4; i++)
    {
        int tx,ty;
        tx=x+dx[i];
        ty=y+dy[i];
        if(tx>=0&&tx<=4&&ty>=0&&ty<=4)
        {
         if(a[tx][ty]==0&&b[tx][ty]==0)
        {
 
            b[tx][ty]=1;//对走过的路径进行标记
            dfs(tx,ty,ans+1);//继续下一步
            b[tx][ty]=0;//回溯到上一步并取消标记
        }
        }
    }
    return;
}

完整代码如下:

#include<iostream>
using namespace std;
int dx[4]= {0,-1,0,1};
int dy[4]= {1,0,-1,0};
int a[10][10],b[10][10];
int min1=88888;
int ans;
void dfs(int x,int y,int ans)
{
    if(x==4&&y==4)
    {
        if(ans<min1)
        {
            min1=ans;
        }
        return;
    }
    for(int i=0; i<4; i++)
    {
        int tx,ty;
        tx=x+dx[i];
        ty=y+dy[i];
        if(tx>=0&&tx<=4&&ty>=0&&ty<=4)
        {
         if(a[tx][ty]==0&&b[tx][ty]==0)
        {
 
            b[tx][ty]=1;
            dfs(tx,ty,ans+1);
            b[tx][ty]=0;
        }
        }
 
    }
    return;
}
int main()
{
    for(int i=0; i<5; i++)
    {
        for(int j=0; j<5; j++)
        {
            cin>>a[i][j];
        }
    }
    b[0][0]=1;
    dfs(0,0,0);
    if(min1>0&&min1<8888)
    cout<<min1;
    else
        cout<<-1<<"\n";
}

经典深搜

棋盘问题

Description

在一个给定形状的棋盘(形状可能是不规则的)上面摆放棋子,棋子没有区别。要求摆放时任意的两个棋子不能放在棋盘中的同一行或者同一列,请编程求解对于给定形状和大小的棋盘,摆放k个棋子的所有可行的摆放方案C。

Input

输入含有多组测试数据。 每组数据的第一行是两个正整数,n k,用一个空格隔开,表示了将在一个n*n的矩阵内描述棋盘,以及摆放棋子的数目。 n
<= 8 , k <= n 当为-1 -1时表示输入结束。 随后的n行描述了棋盘的形状:每行有n个字符,其中 # 表示棋盘区域, .
表示空白区域(数据保证不出现多余的空白行或者空白列)。

Output

对于每一组数据,给出一行输出,输出摆放的方案数目C (数据保证C<2^31)。

Sample Input

2 1
#.
.#
4 4
…#
…#.
.#…
#…
-1 -1

Sample Output

2
1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值