- 博客(312)
- 资源 (77)
- 收藏
- 关注
原创 OrangePi AIpro使用yolov8n在安防领域的深思和实战
香橙派Aipro提供的案例完美的执行成功了,学习起来很适合企业开发者用户。往外继续延伸,如果单纯的使用香橙派Aipro做模型的测试也是很可以的,可惜了我这边内存不太够,没办法做太多太消耗内存的东西。需要自己扩展下存储空间就很完美了,运行大模型肯定也不在话下。跑这个yolov8模型时,从拉下来代码,到搭建环境,再到运行结果,都比较顺利。延迟感觉还是稍慢满打满算一张图需要800ms。不知道跑上多路流然后实时检测的情况如何,还有待验证!
2024-07-16 12:08:59 995
原创 OrangePi AIpro在安防领域的深思和实战(旷视科技CNN模型ShuffleNetV1开发案例测试)
整个过程分为三个主要阶段:初始化资源、初始化模型资源和释放资源。每个阶段的日志显示了操作的开始和结束,所有操作均成功完成。香橙派Aipro提供的案例完美的执行成功了,学习起来很适合企业开发者用户。往外继续延伸,如果单纯的使用香橙派Aipro做模型的测试也是很可以的,可惜了我这边内存不太够,没办法做太多太消耗内存的东西。总之就是学习起来毫不费劲,官方文档一应俱全。跑这个模型时挺快的,只是不知道跑上多路流然后实时检测的情况如何,还有待验证!在边缘计算设备中性能还是足够的。
2024-07-13 11:30:01 939
原创 Python实现监控磁盘空间使用量,读取 sqllite数据库,实现同步删除数据库内容与保存的图像数据
【代码】Python实现监控磁盘空间使用量,读取 sqllite数据库,实现同步删除数据库内容与保存的图像数据。
2023-09-08 16:11:10 244
原创 SE5 - BM1684 人工智能边缘开发板入门指南 -- 模型转换、交叉编译、yolov5、目标追踪
我们属于SoC模式,即我们在x86主机上基于tpu-nntc和libsophon完成模型的编译量化与程序的交叉编译,部署时将编译好的程序拷贝至SoC平台(1684开发板/SE微服务器/SM模组)中执行。注:以下都是在Ubuntu20.04系统上操作的,当然Ubuntu18和22也是可以的,因为我们主要是用的官方 docker 环境进行配置。
2023-08-24 10:49:59 1884 2
原创 让我们在 Python 中使用 ChatGPT,这是目前的热门话题!
许多人已经知道,ChatGPT 是一种强大的自然语言处理 (NLP) 工具,风靡全球。它用于广泛的应用程序,从生成类似人类的文本到构建聊天机器人和虚拟助手。ChatGPT 受欢迎的原因之一是它建立在基于大量文本数据训练的强大开源 GPT-3 语言模型之上。这使得 ChatGPT 能够生成高度逼真和一致的文本,使其成为对任何参与 NLP 的人来说都是有价值的工具。但真正让 ChatGPT 与众不同的是,它专为与世界上最流行的编程语言之一:Python 一起使用而设计。
2023-02-09 10:41:12 7673 2
原创 使用 PatchCore 进行图像异常检测
我们已经介绍了 PatchCore 的关键概念,并将其应用于医学影像数据集。即使数据集非常有限,我们也看到了一些非常有希望的结果。一般来说,如果您有一个用例,其中正常数据很容易获取但异常数据很昂贵(甚至是先验未知的),anomalib 可能是一个值得考虑的好工具。相关代码与数据集下载:欢迎关注公众号:猛男技术控,回复异常检测。
2023-02-07 14:50:51 11698 13
原创 梯度下降系列博客:5、随机梯度下降代码实战
因此,我们不是对数据集的所有训练示例进行计算,而是随机抽取一个示例并对其进行计算。但是,如果我们的数据集有大量训练示例和/或特征,那么计算参数值的计算量就会很大。**注意:**请注意,我们的成本函数不一定会下降,因为我们每次迭代只取一个随机训练样本,所以不要担心。接下来,我们将计算与我们的预测相关的成本。维度:预测值 = (1, 1)+(200, 3)*(3,1) = (1, 1)+(200, 1) = (200, 1)此外,在这种情况下,由于我们只有一个训练示例,因此我们不需要对所有示例执行求和。
2023-02-06 17:31:11 982
原创 梯度下降系列博客:4、小批量梯度下降算法代码实战
小批量梯度下降 (MBGD) 算法的工作原理在批量梯度下降 (BGD) 算法中,我们考虑算法所有迭代的所有训练示例。然而,在随机梯度下降 (SGD) 算法中,我们只考虑一个随机训练示例。现在,在小批量梯度下降 (MBGD) 算法中,我们在每次迭代中考虑训练示例的随机子集。由于这不像 SGD 那样随机,我们更接近全局最小值。然而,MBGD 很容易陷入局部最小值。让我们举个例子来更好地理解这一点。每次迭代的训练示例数 = 100 万 = 1⁰⁶迭代次数 = 1000 = 1⁰³。
2023-02-06 11:00:00 1029
原创 梯度下降系列博客:3、批量梯度下降代码实战
欢迎来到梯度下降系列的结局!在这篇博客中,我们将深入研究梯度下降算法。我们将讨论梯度下降算法的所有有趣风格以及它们在 Python 中的代码示例。我们还将根据每个算法中执行的计算次数来检查算法之间的差异。我们今天不遗余力,因此我们要求您在阅读文档时运行Python文件;这样做将使您对该主题有更准确的理解,从而看到它的实际应用。让我们开始吧!
2023-02-05 22:39:39 587
原创 梯度下降系列博客:1、梯度下降算法基础
维基百科正式定义短语梯度下降如下:在数学中,梯度下降是一种用于寻找可微函数的局部最小值的一阶迭代优化算法。梯度下降是一种机器学习算法,它迭代运行以找到其参数的最佳值。该算法在更新参数值时考虑函数的梯度、用户定义的学习率和初始参数值。单位向量:单位向量是幅度为 1 的向量。我们如何找到向量的长度或大小?考虑以下向量 u。矢量的长度然后计算为其所有分量平方和的平方根。函数**f(x, y)在向量 u(单位向量)方向上的导数由函数梯度与单位向量 u的****点积**给出。
2023-02-05 22:01:17 547
原创 梯度下降系列博客:2、梯度下降算法背后的数学直觉
欢迎!今天,我们正在努力开发一种强大的数学直觉,以了解梯度下降 算法如何为其参数找到最佳值。拥有这种感觉可以帮助您发现机器学习输出中的错误,并更加了解梯度下降 算法如何使机器学习如此强大。在接下来的几页中,我们将推导均方误差函数的梯度下降算法方程。我们将使用此博客的结果来编写梯度下降算法的代码。让我们深入研究吧!
2023-02-05 21:32:25 267
原创 深入探讨YOLOv8 网络架构
我们的基准测试是在英特尔的支持下开发的,是计算机视觉从业者的基准测试,旨在为以下问题提供更好的答案:“该模型在我的自定义数据集上的表现如何?由于我们知道这个模型会不断改进,我们可以将最初的 YOLOv8 模型结果作为基线,并期待随着新迷你版本的发布而进行未来的改进。下面的箱线图告诉我们,当针对 Roboflow 100 基准进行测量时,YOLOv8 有更少的离群值和更好的 mAP。是早期 YOLO 模型中众所周知的棘手部分,因为它们可能代表目标基准框的分布,而不是自定义数据集的分布。
2023-02-05 20:37:35 16905 1
原创 PAC的数学原理
PCA(Principal Component Analysis)是一种常用的数据分析方法。PCA 通过线性变换将原始数据变换为一组各维度线性无关的表示,可用于提取数据的主要特征分量,常用于高维数据的降维。网上关于 PCA 的文章有很多,但是大多数只描述了 PCA 的分析过程,而没有讲述其中的原理。这篇文章的目的是介绍 PCA 的基本数学原理,帮助读者了解 PCA 的工作机制是什么。当然我并不打算把文章写成纯数学文章,而是希望用直观和易懂的方式叙述 PCA 的数学原理,所以整个文章不会引入严格的数学推导。
2023-02-04 17:44:19 844
原创 YOLOv8 Ultralytics:最先进的 YOLO 模型——简介+实战教程
利用以前的 YOLO 版本,,同时为训练模型提供统一框架,以执行在撰写本文时,许多功能尚未添加到 Ultralytics YOLOv8 存储库中。这包括训练模型的完整导出功能集。此外,Ultralytics 将在 Arxiv 上发布一篇论文,将 YOLOv8 与其他最先进的视觉模型进行比较。
2023-02-03 20:11:53 43410 3
原创 线性代数篇
主线为花书第二章-线性代数,但其上面一些表述属实费解,于是参考B站3Blue1Brown线性代数和B站同济子豪兄的视频讲解。先放一句3B1B的话共勉,伙计们不要被数学公式吓到,慢慢钻研,慢慢推肯定能学懂。线性代数这一部分相信一般理工科的同志们肯定都学过,这里主要是稍微看看回忆下。标量、向量、矩阵和张量标量(scalar):一个单独的数,用斜体表示,通常被赋予小写的变量名称。向量(vector):物理中的向量有长度和方向决定,长度和方向不变可以随意移动,它们表示的是同一个向量。计算机中的向量更多的是
2023-02-03 15:33:42 1059
原创 EfficientNet v1 v2
MBConv模块和EfficientNetV1中是一样的,其中模块名称后跟的4,6表示expansion ratio,SE0.25表示使用了SE模块,0.25表示SE模块中第一个全连接层的节点个数是输入该MBConv模块特征矩阵channels的。,当n=1时,不升维),一个kxk的Depthwise Conv卷积,k主要有3x3和5x5两种情况,一个SE模块,然后接一个1x1的普通卷积进行降维作用,再加一个Droupout,最后再进行特征图融合。这样就实现了注意力。
2023-02-01 14:50:30 719
原创 Mobilenet v1-v3
作者认为,当前模型是基于 V2 模型中的倒残差结构和相应的变体(如下图)。使用1×1 卷积来构建最后层,这样可以便于拓展到更高维的特征空间。这样做的好处是,在预测时,有更多更丰富的特征来满足预测,但是同时也引入了额外的计算成本与延时。所以,需要改进的地方就是要保留高维特征的前提下减小延时。首先,还是将 1×1 层放在到最终平均池之后。这样的话最后一组特征现在不是 7x7(下图 V2 结构红框),而是以 1x1 计算(下图 V3 结构黄框)。这样的好处是,在计算和延迟方面,特征的计算几乎是免费的。
2023-01-31 17:08:07 639
原创 YOLOv3论文精读: An Incremental Improvement-增量式的改进
我们对 YOLO 进行了一系列更新!它包含一堆小设计,可以使系统的性能得到更新。我们也训练了一个新的、比较大的神经网络。虽然比上一版更大一些,但是精度也提高了。不用担心,它的速度依然很快。YOLOv3 在 320×320 输入图像上运行时只需 22ms,并能达到 28.2 mAP,其精度和 SSD 相当,但速度要快上 3 倍。使用之前 0.5 IOU mAP 的检测指标,YOLOv3 的效果是相当不错。
2023-01-13 08:00:00 925
原创 终于弄懂了 非极大抑制 NMS
NMS的作用就是有效地剔除目标检测结果中多余的检测框,保留最合适的检测框。以YOLOv5为例,yolov5模型的输入三个feature map的集合,加上batch的维度,也就是三维张量,即batchp0∗p0p1∗p1p2∗p2∗34confclsnum,模型输出的为相对于调整图片的xywh,然后后面就要进入后处理阶段。具体来看,模型输入为640∗640时,推理输出结果在20∗2040∗4080∗80。
2023-01-12 10:18:43 286
原创 yolov1 论文精读 - You Only Look Once- Unified, Real-Time Object Detection-统一的实时目标检测
我们提出了一种新的目标检测方法- YOLO。以前的目标检测工作重复利用分类器来完成检测任务。相反,我们将目标检测框架看作回归问题,从空间上分割边界框和相关的类别概率。单个神经网络在一次评估中直接从整个图像上预测边界框和类别概率。由于整个检测流水线是单一网络,因此可以直接对检测性能进行端到端的优化。我们的统一架构非常快。我们的基础 YOLO 模型以 45 帧/秒的速度实时处理图像。Fast YOLO 是 YOLO 的一个较小版本,每秒能处理惊人的 155 帧图像,同时实现其它实时检测器两倍的 mAP。
2023-01-11 16:01:54 844 1
原创 异常检测-缺陷检测-论文精读PaDiM
我们提出了一个新的 Patch 分布建模框架,在单类学习的设置下,PaDiM 同时检测和定位图像中的异常。PaDiM 利用一个预先训练好的卷积神经网络 (CNN) 进行 patch 嵌入,利用多元高斯分布得到正常类的概率表示。它还利用了 CNN 的不同语义级别之间的相关性来更好地定位异常。PaDiM 在 MVTec AD 和 STC 数据集上的异常检测和定位方面优于当前最先进的方法。为了匹配真实世界的视觉工业检查,我们扩展了评估协议,以评估非对齐数据集上异常定位算法的性能。
2023-01-11 14:39:22 4085
原创 直观理解--马氏距离
1. 数据指标的单位对距离度量的影响在很多机器学习问题中,样本间的特征都可以用距离去描述,比如说最常见的欧氏距离。对于欧氏距离而言,空间中任意两点Px1x2xpPx1x2xp与Qy1y2ypQy1y2ypdPQx1−y12x2−y22⋯xp−yp2dPQx1−y12x2−y22⋯xp−yp2显然,当固定点QQQ。
2023-01-10 09:15:00 2617
原创 PCA 主成分分析-清晰详细又易懂
PCA(Principal Component Analysis)是一种常用的数据分析方法。PCA 通过将原始数据变换为一组的表示,可用于提取数据的主要特征分量,常用于高维数据的降维。网上关于 PCA 的文章有很多,但是大多数只描述了 PCA 的分析过程,而没有讲述其中的原理。这篇文章的目的是介绍 PCA 的基本数学原理,帮助读者了解 PCA 的工作机制是什么。当然我并不打算把文章写成纯数学文章,而是希望用直观和易懂的方式叙述 PCA 的数学原理,所以整个文章不会引入严格的数学推导。
2023-01-09 15:59:53 2805
原创 姿态估计评价指标
对于3D的姿态估计而言,常用的评价指标是MPJPE(Mean Per Joint Postion Error),从字面意思也可以看出其就是预测关键点和groundtruth之间的平均欧式距离,不过一般关键点的表示形式为root-relative,即以其中一个关键点为根节点的坐标。个关键点的归一化因子,和关键点标注的难易有关,是通过对所有样本的人工标注和真实值的统计标准差,的矩阵,矩阵的每一行为groundtruth中的一个人与预测结果的。,因此此值可作为常数,如果使用的关键点类型不在此当中,则另外计算。
2023-01-07 18:56:44 1549
原创 人体姿态估计-论文精读--DeepPose: Human Pose Estimation via Deep Neural Networks
我们提出了一种基于深度神经网络(DNNs)的人体姿态估计方法。姿态估计被表述为一个基于DNN的身体关节回归问题。我们提出了一连串的DNN回归器,以输出高精度的姿态估计。该方法的优势是以一种整体的方式推理姿势,有一个简单但强大的公式,利用了深度学习的最新进展。我们提出了一个详细的实证分析,在各种真实图像的四个学术基准上具有最新或更好的性能。
2023-01-07 17:36:28 1230
原创 FYD-Focus Your Distribution-关注你的分布:异常检测和定位的从粗到细的非对比性学习-FYD
无监督异常检测的本质是学习正态样本的紧凑分布,并在测试中检测异常值。同时,现实世界中的异常现象在高分辨率的图像中通常是细微的,特别是在工业应用中。为此,我们提出了一个新的无监督的异常检测和定位框架。我们的方法旨在通过一个从粗到细的排列过程从正常图像中学习密集和紧凑的分布。粗配准阶段在图像和特征层面上对物体的像素位置进行标准化。然后,精细对齐阶段密集地使图像中所有相应位置的特征的相似性最大化。为了促进只用正常图像的学习,我们为精细对齐阶段提出了一个新的借口任务,即非对比性学习。
2023-01-03 11:53:45 1864 4
原创 oh my 毕设-人体姿态估计综述
人体姿态估计是一个对人体关节进行识别和分类的方法。本质上,这是一种捕获描述人类的关键点的每个关节(arm,head、torso,etc...)的方法。
2023-01-01 11:01:11 1742 1
原创 简阅人体姿态估计深度学习方法-simpread-Human Pose Estimation Deep Learning Approach
Human Pose Estimation(HPR 人体姿态估计)是一个对人体关节进行识别和分类的方法。本质上,这是一种捕获描述人类的关键点的每个关节(arm,head、torso,etc...)的方法。
2023-01-01 10:53:53 1199
原创 oh my 毕设-人体姿态估计-简介&应用场景
毕设题目为人体姿态估计,之前主要关注在目标检测上,这方面不太熟悉,于是想做一个系列专栏,从0到1学习姿态估计。姿态估计本质是关键点检测。人体姿态的估计常常首先预测出人体各个关键点的位置坐标,然后根据先验知识确定关键点之间的空间位置关系,从而得到预测的人体骨架。
2022-12-30 20:07:08 1907 2
原创 yolov5修改骨干网络-使用自己搭建的网络-以efficientnetv2为例
efficientnet则是通过NAS搜索,同时增加width、depth以及resolution,使网络结构达到最优。下表为EfficientNet-B0的网络框架(B1-B7就是在B0的基础上修改Resolution,Channels以及Layers),可以看出网络总共分成了9个Stage。第一个Stage是一个卷积核大小为3x3,stride为2的普通卷积层(包含BN和Swish激活函数);
2022-12-15 15:39:48 6087 15
原创 yolov5修改骨干网络-使用pytorch自带的网络-以Mobilenet和efficientnet为例
通过我们知道:yolov5.yaml中存放的是我们模型构建参数,具体构建过程在yolo.py中的parse_model函数,通过循环遍历yolov5.yaml给的参数,去寻找网络名称,并将args的参数传入网络,下面先用pytorch自带的mobile网络进行修改并替换原有yolov5网络。
2022-12-14 20:21:53 3392
原创 yolov5修改骨干网络--原网络说明
以yolov5s为例(模型都是在yolov5l上修改了depth_multiple和width_multiple,上面图形是画的yolov5l的,下面的yaml是yolov5s的目的是为了更好的计算网络信息)进入模型搭建的,传入参数:cfg就是我们yaml文件中定义的网络,ch表示输入是彩色图,nc是num classes,anchors就是anchors。下面看具体怎么搭建的。我认为yolo的核心代码就是parse_model函数,简小精悍(当然最主要的还是Conv,C3,Bottleneck这些函数)
2022-12-14 16:18:26 2486 2
原创 error: (-215:Assertion failed) !ssize.empty() in function ‘cv::resize‘
(千千万万不要忘了最后一个斜杠,不然读取的就变成了test这个文件夹而不是里面的图片了,因为一个不小心,我苦恼了两天,还以为是opencv的锅,尝试了无数种解决方案,放佛一个白痴!1.图片路径写成了如下形式:C:\Users\Desktop\test。正确的应该为:C:/Users/Desktop/test/2.图片路径少写了一个斜杠(图片存放在test文件夹中)正确:C:/Users/Desktop/test/错误:C:/Users/Desktop/test。然而都改了一遍后,在我这里根本不适用(国粹)
2022-12-12 14:48:25 985
原创 YOLOv2-yolo9000-batter,faster,stronger 论文精读&解析
yolo9000-batter,faster,stronger我们提出了一种新的方法来利用大量的图像分类数据,来扩大当前检测系统的范围。我们的方法使用目标分类的分层视图,允许我们将不同的数据集组合在一起。我们还提出了一种联合训练算法,使我们能够在检测和分类数据上训练目标检测器。我们的方法利用有标签的检测图像来学习精确定位物体,同时使用分类图像来增加特征表达和鲁棒性。YOLOv2舍弃了Dropout,卷积后全部加入BN层,批归一化会获得收敛性的显著改善,同时消除了对其他形式正则化的需求。通
2022-12-05 21:42:27 567
原创 yolov1 论文理解 - You Only Look Once-Unified, Real-Time Object Detection-统一的实时目标检测
这是yolov1的模型,他将图像划分成了7x7个网格,每个网格负责预测两个边界框,每个边界框都有5个信息$x、y、w、h、confidence $ ,(这个confidence是该区域有目标框的概率),共预测20个类,每个类都有一个置信度信息(这个confidence是这个框是猫是狗的概率),所以最终输出为。网格强化了边界框预测中的空间多样性。合适的阈值下可能只留下一个框,当然某些阈值下可能会保留更多的框,阈值的设置应该是根据目标任务设置的,越高的阈值(越不容易置零,即越宽容)会检测出越多的目标。
2022-12-05 21:41:47 801
我爱上班朗诵稿+ppt,每一句都卡点,爆笑连连
2024-02-04
河道漂浮物目标检测数据集,有6200余张图片 内含多个标签,比如bottle,塑料垃圾等
2023-11-20
火焰 烟雾数据集,里面有12977张图片,训练精度达到0.935 压缩包里包含训练的pt和数据集网盘地址
2023-11-15
目标跟踪 C++ OpenCV KCF目标追踪 fps 20+ 注释详细,直接用
2022-10-28
已编译 C++ OpenCV contrib 4.5.3 已经编译好,直接配置
2022-10-28
已编译 C++ OpenCV contrib 3.4.6 已经编译好,直接配置
2022-10-28
数据结构课后习题答案,把xxx改为doc
2021-12-19
数学物理方法试题分析与解答.zip
2021-12-19
Could not find module ' \codna\Library\bin\geos_c.dll'
2021-04-11
预训练网络RESNET pytorch源码,天气数据四分类问题
2021-02-24
应用无法正常启动0xc000007b修复工具.zip
2021-02-17
随机森林气温预测数据+代码.zip
2021-02-03
高等数学、数学分析期末必考知识点
2021-01-01
reset_jetbrains_eval_mac_linux.zip
2020-09-06
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人