题意:
给出一个长度为 n n n 的数组,一次操作可以选择一段连续且值都相同的区间,然后使其变成其他值,问最少需要多少次操作,才能使得数组的值全相等。数组中每个数最多出现 15 15 15次。
题解:
先对原数组连续相同的段压缩成 1 1 1个, 这样保证相邻数不同。
假设某一区间有 m m m个数,如果这 m m m个数都不相同,那么操作数最小是 m − 1 m-1 m−1 ,如果区间两端点的数相同,那么其实可以减少一次操作。
考虑 d p [ i ] [ j ] dp[i][j] dp[i][j] ,表示区间 ( i , j ) (i,j) (i,j) 能减少的最多操作数。那么可以写出转移方程:
d p [ i ] [ j ] = m a x ( d p [ i ] [ j − 1 ] , max a [ k ] = a [ j ] ( d p [ i ] [ k ] + d p [ k + 1 ] [ j − 1 ] + 1 ) ) dp[i][j]=max(dp[i][j-1],\max\limits_{a[k]=a[j]}(dp[i][k]+dp[k+1][j-1]+1)) dp[i][j]=max(dp[i][j−1],a[k]=a[j]max(dp[i][k]+dp[k+1][j−1]+1))
枚举 ( i , j ) (i,j) (i,j) 区间中与 a [ j ] a[j] a[j] 相等的位置 k k k,那么 ( k , j ) (k,j) (k,j) 这段区间可以减少一次操作,即 d p [ k + 1 ] [ j − 1 ] + 1 dp[k+1][j-1]+1 dp[k+1][j−1]+1 。这就是为什么每个数最多 15 15 15次的原因。
那么最后答案就是 m − 1 − d p [ 1 ] [ m ] m-1-dp[1][m] m−1−dp[1][m]。
代码:
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<queue>
#include<map>
#include<stack>
#include<set>
#include<ctime>
#define iss ios::sync_with_stdio(false)
using namespace std;
typedef unsigned long long ull;
typedef long long ll;
typedef pair<int,int> pii;
const int mod=1e9+7;
const int MAXN=2e5+5;
const int inf=0x3f3f3f3f;
int a[MAXN];
int b[MAXN];
int dp[5005][5005];
int id[5005];
int pre[5005];
void init(int n)
{
for(int i=1;i<=n;i++) id[i]=0;
}
int main()
{
int t;
scanf("%d",&t);
while(t--)
{
int n;
scanf("%d",&n);
for(int i=1;i<=n;i++)
{
scanf("%d",&a[i]);
}
init(n);
int m=0;
int p=a[1];
for(int i=2;i<=n;i++)
{
if(a[i]!=p)
{
b[++m]=p;
}
p=a[i];
}
b[++m]=p;
for(int i=1;i<=m;i++)
{
if(id[b[i]])
{
pre[i]=id[b[i]];
id[b[i]]=i;
}
else id[b[i]]=i,pre[i]=0;
}
for(int len=1;len<=m;len++)
{
for(int i=1;i<=m-len+1;i++)
{
int j=i+len-1;
if(len==1) dp[i][j]=0;
else if(len==2)
{
if(b[i]==b[j]) dp[i][j]=1;
else dp[i][j]=0;
}
else
{
dp[i][j]=dp[i][j-1];
int k=pre[j];
while(k>=i)
{
dp[i][j]=max(dp[i][j],dp[k+1][j-1]+dp[i][k]+1);
k=pre[k];
}
}
}
}
cout<<m-dp[1][m]-1<<endl;
}
}