题意:
初始状态下只有一个根节点为0的树,且无其他点,每个点有两个权值,黄金数量 a i a_i ai和黄金价格 c i c_i ci,给出 q q q次操作,每次操作分为两种:
1. 1. 1. 往树中添加一个叶子节点。
2. 2. 2. 查询在节点 u u u到根节点这条路径上买 w w w个黄金所需的最小花费。
保证子节点的黄金价格大于父节点。且输入强制在线。
题解:
因为子节点的价格大于父节点,所以对于每次查询操作,必定是从根节点先开始买。但是考虑到每次查询操作后,树上的点的权值会被修改,也就意味着有些父节点上已经没有黄金了,所以我们必须要快速找到祖先节点中还有黄金的节点。
不难想到,利用倍增法可以解决此问题。
对于操作1,每加入一个节点,我们就维护它的倍增数组。
对于操作2,我们利用倍增找到第一个非空祖先,然后将其更新即可。
代码:
#pragma GCC diagnostic error "-std=c++11"
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<queue>
#include<map>
#include<stack>
#include<set>
#include<ctime>
#define iss ios::sync_with_stdio(false)
using namespace std;
typedef unsigned long long ull;
typedef long long ll;
typedef pair<int,int> pii;
const int mod=1e9+7;
const int MAXN=3e5+5;
const int inf=0x3f3f3f3f;
ll a[MAXN],c[MAXN];
int dp[MAXN][30];
int get_fa(int u)
{
for(int i=20;i>=0;i--){
if(a[dp[u][i]]){
u=dp[u][i];
}
}
return u;
}
int main()
{
int n;
cin>>n>>a[0]>>c[0];
for(int i=1;i<=n;i++){
int op;
cin>>op;
if(op==1){
cin>>dp[i][0]>>a[i]>>c[i];
for(int j=1;j<=20;j++){
dp[i][j]=dp[dp[i][j-1]][j-1];
}
}
else{
int v;
ll w;
cin>>v>>w;
ll ans1=0,ans2=0;
while(a[v]&&w){
int u=get_fa(v);
//cout<<u<<endl;
ans1+=min(a[u],w);
ans2+=min(a[u],w)*c[u];
if(a[u]>=w) a[u]-=w,w=0;
else w-=a[u],a[u]=0;
}
cout<<ans1<<" "<<ans2<<endl;
}
}
}