差分约束系统学习笔记
不知不觉4个多月没写博客了,其实写博客单纯是不想打代码,划一会水。
一、前置知识
单源最短路算法 SPFA/Bellman_Ford
二、什么是差分约束系统
差分约束系统是求解关于一组变量的特殊不等式组的方法。通俗一点地说,差分约束系统就是一些不等式的组,而我们的目标是通过给定的约束不等式组求出最大值或者最小值或者差分约束系统是否有解。
特点是全都是两个未知数的差小于等于某个常数(大于等于可以化为小于等于,等于可以拆分为大于等于和小于等于),这样的不等式组称作差分约束系统。
update: 区间和可以转换为前缀和进行。
这个不等式组要么无解,要么有无穷多个解,我们通常只需要求出其最大解/最小解。
三、差分约束系统的求解
差分约束系统可以转化为图论来解决。
差分约束和网络流其实挺像的,重点都是读题建模建图
SPFA模板:
#include <algorithm>
#include <bitset>
#include <cmath>
#include <cstdio>
#include <cstring>
#include <deque>
#include <iostream>
#include <map>
#include <queue>
#include <set>
#include <sstream>
#include <stack>
#include <string>
#include <vector>
using namespace std;
#define int long long
const int MAXN = 30005;
const int INF = 1e12;
struct Edge
{
int v, cost;
Edge(int v = 0, int cost = 0) : v(v), cost(cost)
{
}
};
vector<Edge> E[MAXN];
void addedge(int u, int v, int w)
{
E[u].push_back(Edge(v, w));
}
bool vis[MAXN];
int cnt[MAXN];
int dist[MAXN];
bool spfa(int start, int n) //单源最短路 SPFA算法
{
memset(vis, 0, sizeof(vis));
for (int i = 0; i <= n; i++)
dist[i] = -INF; //最长路
vis[start] = 1;
dist[start] = 0;
queue<int> q;
q.push(start);
memset(cnt, 0, sizeof(cnt));
cnt[start] = 1;
while (!q.empty())
{
int u = q.front();
q.pop();
vis[u] = 0;
for (int i = 0; i < E[u].size(); i++)
{
int v = E[u][i].v;
if (dist[v] < dist[u] + E[u][i].cost) //最长路
{
dist[v] = dist[u] + E[u][i].cost;
if (!vis[v])
{
vis[v] = 1;
q.push(v);
if (++cnt[v] > n)
return false;
}
}
}
}
return true;
}
signed main()
{
ios::sync_with_stdio(false);
cin.tie(0);
cout.tie(0);
int n, m;
cin >> n >> m;
while (m--)
{
int a, b, c;
cin >> a >> b >> c;
addedge(a - 1, b, c);
}
//一般情况下 A<=B+C addedge(B,A,C)
//如果原图不联通,则按需求添加一个源点,向每个顶点连边(边权通常为0,糖果那道题,每人必须拿到糖果,边权为1)
for (int i = 0; i <= n; i++)
{
if (i != 0)
addedge(i - 1, i, 0);
if (i != n)
addedge(i, i - 1, -1);
}
spfa(0, n);
cout << dist[n] << endl;
}