Q1.selection problem:设有一组N个数而要确定其中第k个最大者。此时取k=N/2
①冒泡排序(时间复杂度 O(N²));
②先把前k个元素(以递减的顺序)对其排序。接着,将剩下的元素逐个读入。
当新元素被读入时,如果它小于数组中第k个元素则忽略,否则就将其放入正确的位置上。
######①冒泡排序:
#include<stdio.h>
#include<time.h>
#include<stdlib.h>
#define N 30000
int main(){
clock_t elapse;
srand((unsigned int)time(0));
int a[N];
int i,j,exchange;
for(i=0;i<N;i++){
a[i]=rand()%1000+1; //读入N个随机生成整数
} //整数值范围0~1000
elapse=clock();
for(i=0;i<N-1;i++){
for(j=i+1;j<N;j++){ //冒泡排序
if(a[j]>a[i]){
exchange=a[i];
a[i]=a[j];
a[j]=exchange;
}
}
}
elapse=clock()-elapse;
printf("耗时:%.6lf毫秒",(double)elapse);
printf("\n第k为的值为:%d",a[N/2]);
}
######②先排前k个数:
#include<stdio.h>
#include<stdlib.h>
#define N 30000 //k=N/2 k为5
#include<time.h>
int main(){
clock_t elapse;
int a[N],k=N/2;
int i,j,exchange;
srand((unsigned int)time(0)); //用 srand()函数初始化种子
for(i=0;i<N;i++){
a[i]=rand()%1000+1;
}
elapse=clock(); //用clock()记录时间
for(i=0;i<k-1;i++){
for(j=i+1;j<k;j++){
if(a[i]<a[j]){
exchange=a[i];
a[i]=a[j];
a[j]=exchange; //冒泡排序前k个数
}
}
}
for(i=k;i<N;i++){ //遍历k之后的数据
if(a[i]>a[k-1]){ //出现大于a[k-1],取代a[k-1]
a[k-1]=a[i];
for(j=k-1;j>0;j--){
if(a[j]>a[j-1]){ // 依次与前一个值比较,如果比前一个值大
exchange=a[j]; //则与前一个值交换位置(使此值位于恰当的位置)
a[j]=a[j-1];
a[j-1]=exchange;
}
}
}
}
elapse=clock()-elapse;
printf("耗时%.6lf毫秒",(double)elapse);
printf("\n第k位的值为:%d ",a[N/2]);
}
③快选算法(采用快排分治的思想):
- 取区间内的一个标准x;
- 分成{left区域}<=x, {right区域}>=x;
- 判断k所在区间并进行查找,无限夹击直到l==r
#include<algorithm>
#include<iostream>
#include<cstdio>
using namespace std;
const int maxn=1e5+5;
int a[maxn];
int quick_sort(int a[], int l, int r, int k){
if(l==r) return a[l];
int x=a[l+r>>1],i=l-1, j=r+1;
while(i<j){
do i++; while(a[i]<x);
do j--; while(a[j]>x);
if(i<j)swap(a[i],a[j]);
}
if(k<=j) return quick_sort(a,l,j,k);
else return quick_sort(a,j+1,r,k);
}
int main(){
int n,k;
scanf("%d%d",&n,&k);
for(int i=0;i<n;i++) scanf("%d",&a[i]);
cout<<quick_sort(a,0,n-1,k-1);
return 0;
}
冒泡排序:
N | 耗时(毫秒) |
---|---|
10000 | 247 |
20000 | 975 |
30000 | 1919 |
40000 | 3184 |
50000 | 5114 |
先排前k个值:
N | 耗时(毫秒) |
---|---|
10000 | 213 |
20000 | 617 |
30000 | 1279 |
40000 | 2651 |
50000 | 3770 |