2021年牛客寒假集训营第四场题解

A、九峰与签到题

思路:
按题意模拟即可

代码:

#include <iostream>
#include <cstring>

using namespace std;

const int N = 2e5 + 5;

int a[N], st1[N], st2[N];
string op;

int main() {
    int n, m;
    cin >> n >> m;
    for (int i = 1; i <= n; i++) {
        int x;
        scanf("%d", &x);
        cin >> op;
        if (op == "AC") {
           a[x]++; 
           st1[x] = 1;
        } else if (op == "UNAC") {
           a[x]--;
            st1[x] = 1;
        }
        if (a[x] < 0)
            st2[x] = 1;
    }
    int cnt = 0;
    for (int i = 0; i <= m; i++) {
        if (a[i] >= 0 && st1[i] && !st2[i]) {
            printf("%d ", i);
            cnt++;
        }
    }
    if (!cnt)
        printf("-1");
    return 0;
}
B、武辰延的字符串

思路:
先确定 s 串与 t 串中的一段满足条件的相同前缀(在 t 串中该前缀后面的第一个字母与 s 串中第一个字母相同),然后求出在 t 串中该前缀后面的连续 x 个字母,其也是 s 串中长度为 x 的前缀,这个 x 就是该种枚举方式的方案数。
对于 x 的值可以用字符串哈希 + 二分来确定

代码:

#include <bits/stdc++.h>

using namespace std;

typedef unsigned long long ULL;

const int N = 1e5 + 5, B = 131;

char s[N], t[N];
ULL h1[N], h2[N], p[N];

ULL get1(int l, int r) {
	return h1[r] - h1[l-1] * p[r-l+1];
}

ULL get2(int l, int r) {
	return h2[r] - h2[l-1] * p[r-l+1];
}

int main() {
	scanf("%s%s", s+1, t+1);
	p[0] = 1;
	int n1 = strlen(s+1), n2 = strlen(t+1);
	for (int i = 1; i <= max(n1, n2); i++) {
		if (i <= n1)
			h1[i] = h1[i-1] * B + s[i];
		if (i <= n2)
			h2[i] = h2[i-1] * B + t[i];
		p[i] = p[i-1] * B;
	}
	ULL ans = 0;
	for (int i = 1; i < n2; i++) {
		if (s[i] != t[i]) 
			break;
		if (t[i+1] != s[1]) 
			continue;
		int l = 1, r = n1;
		while (l < r) {
			int mid = l + r + 1 >> 1;
			ULL t1 = get1(1, mid);
			ULL t2 = get2(i+1, i+mid);
			if (t1 == t2) {
				l = mid;
			} else {
				r = mid - 1;
			}
		}
		ans += l;
	}
	cout << ans << "\n";
	return 0;
}
H、吴楚月的表达式

思路:
按照题意建树然后遍历即可,注意四则运算的优先级与减法和除法的的取模方式

代码:

#include <bits/stdc++.h>

using namespace std;

typedef long long LL;

const int N = 1e5 + 5, p = 1e9 + 7;

int n, m;
int fa[N], num[N];
char c[N];
vector<int> son[N];
struct node{
	LL a, b;
}ans[N];

LL qpow(LL a, LL b) {
	LL ans = 1;
	while (b) {
		if (b & 1)	
			ans = ans * a % p;
		a = a * a % p;
		b >>= 1;
	}
	return ans;
}

void dfs(int x) {
	for (int i = 0; i < son[x].size(); i++) {
		if ((c[son[x][i]]) == '+') {
			ans[son[x][i]].a = (ans[x].a + ans[x].b) % p;
			ans[son[x][i]].b = num[son[x][i]] % p;
		}
		if ((c[son[x][i]]) == '-') {
			ans[son[x][i]].a = (ans[x].a + ans[x].b) % p;
			ans[son[x][i]].b = (-num[son[x][i]] % p + p) % p;
		}
		if ((c[son[x][i]]) == '*') {
			ans[son[x][i]].a = ans[x].a;
			ans[son[x][i]].b = ans[x].b * num[son[x][i]] % p;
		}
		if ((c[son[x][i]]) == '/') {
			ans[son[x][i]].a = ans[x].a;
			ans[son[x][i]].b = ans[x].b * qpow(num[son[x][i]], p-2) % p;
		}
		dfs(son[x][i]);
	}
}

int main() {
	cin >> n;
	for (int i = 1; i <= n; i++) 
		scanf("%d", &num[i]);
	for (int i = 2; i <= n; i++) {
		scanf("%d", &fa[i]);
		son[fa[i]].push_back(i);
	}
	for (int i = 2; i <= n; i++) 
		scanf(" %c", &c[i]);
	ans[1].a = 0, ans[1].b = num[1];
	dfs(1);
	for (int i = 1; i <= n; i++) 
		cout << (ans[i].a+ans[i].b) % p << ' ';
	return 0;
}
J、邬澄瑶的公约数

思路:
要求多个数的最大公约数,我们可以先将这些分解质因数,然后比较这些数中所有的质因子,选取每个质因子最大出现的最小指数相乘即可得到答案

代码:

#include <bits/stdc++.h>

using namespace std;

typedef long long LL;

const LL N = 1e4 + 5, MOD = 1e9 + 7;

LL n, k, ans = 1;
LL a[N], p[N];
LL prime[N];
bool st[N];

void init(LL m) {
    for (int i = 2; i <= m; i++) {
        if (!st[i])
            prime[++k] = i;
        for (int j = 1; prime[j] <= m / i; j++) {
            st[prime[j] * i] = true;
            if (i % prime[j] == 0)
                break;
        }
    }
}

LL qpow(int a, int b, int m) {
    LL ans = 1 % m;
    while (b) {  
        if (b & 1)
            ans = ans * a % m;
        a = (LL)a * a % m;
        b >>= 1;  
    }
    return ans;
}

int main() {
    scanf("%lld", &n);
    for (int i = 1; i <= n; i++)
        scanf("%lld", &a[i]);
    for (int i = 1; i <= n; i++)
        scanf("%lld", &p[i]);
    if (n == 1) {
        printf("%lld\n", qpow(a[1], p[1], MOD));
        return 0;
    }
    init(n);
    LL temp = 0x3f3f3f3f;
	for (int i = 1; i <= k; i++) {
		for (int j = 1; j <= n; j++) {
			LL cnt = 0;
			while (a[j] % prime[i] == 0) {
				cnt++;
			}
			cnt = (cnt * p[j]) % MOD;
			temp = min(temp, cnt);
		}
		ans = (ans * qpow(prime[i], temp, MOD)) % MOD;
	}
	cout << ans;
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值