Kafka: ------ Spring Boot整合Kafka 、接受数据、发送数据

- 引入依赖

<parent>
  <groupId>org.springframework.boot</groupId>
  <artifactId>spring-boot-starter-parent</artifactId>
  <version>2.1.5.RELEASE</version>
</parent>
<dependencies>
  <dependency>
    <groupId>org.springframework.boot</groupId>
    <artifactId>spring-boot-starter</artifactId>
  </dependency>
  <dependency>
    <groupId>org.springframework.kafka</groupId>
    <artifactId>spring-kafka</artifactId>
  </dependency>
  <dependency>
    <groupId>org.apache.kafka</groupId>
    <artifactId>kafka-streams</artifactId>
    <version>2.0.1</version>
  </dependency>
  <!--测试-->
  <dependency>
    <groupId>org.springframework.boot</groupId>
    <artifactId>spring-boot-starter-test</artifactId>
    <scope>test</scope>
  </dependency>
</dependencies>

接受数据

application.properties

spring.kafka.bootstrap-servers=Centos:9092

spring.kafka.producer.retries=5
spring.kafka.producer.acks=all
spring.kafka.producer.batch-size=16384
spring.kafka.producer.buffer-memory=33554432
spring.kafka.producer.key-serializer=org.apache.kafka.common.serialization.StringSerializer
spring.kafka.producer.value-serializer=org.apache.kafka.common.serialization.StringSerializer
spring.kafka.producer.properties.enable.idempotence=true
spring.kafka.producer.transaction-id-prefix=transaction-id-

spring.kafka.consumer.group-id=group1
spring.kafka.consumer.auto-offset-reset=earliest
spring.kafka.consumer.enable-auto-commit=true
spring.kafka.consumer.auto-commit-interval=100
spring.kafka.consumer.properties.isolation.level=read_committed
spring.kafka.consumer.key-deserializer=org.apache.kafka.common.serialization.StringDeserializer
spring.kafka.consumer.value-deserializer=org.apache.kafka.common.serialization.StringDeserializer

KafkaApplicationDemo 类

package com.baizhi;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
@SpringBootApplication
public class KafkaApplicationDemo {
    public static void main(String[] args) {
        SpringApplication.run(KafkaApplicationDemo.class,args);
    }
}

KafkaListenerComponent 类

package com.baizhi;
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.springframework.kafka.annotation.KafkaListener;
import org.springframework.kafka.annotation.KafkaListeners;
import org.springframework.stereotype.Component;
@Component
public class KafkaListenerComponent {
    @KafkaListeners(value = {@KafkaListener(topicPattern = "topic.*")})
    public void reciveRecored(ConsumerRecord<String,String> record){
        System.out.println(record.value());
    }
}

往topic中写入数据即可以得到 如下所示:

生产者类写入topic01数据

package com.baizhi.jsy.kafkaapi;
import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.ProducerConfig;
import org.apache.kafka.clients.producer.ProducerRecord;
import org.apache.kafka.common.serialization.StringSerializer;
import java.text.DecimalFormat;
import java.util.Properties;
public class ProductKafka {
    public static void main(String[] args) {
        //创建生产者
        Properties properties = new Properties();
        properties.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG,"Centos:9092");
        properties.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, StringSerializer.class.getName());        properties.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG,StringSerializer.class.getName());
        //优化参数
        properties.put(ProducerConfig.BATCH_SIZE_CONFIG,1024*1024);//生产者尝试缓存记录,为每一个分区缓存一个mb的数据
        properties.put(ProducerConfig.LINGER_MS_CONFIG,500);//最多等待0.5秒.
        KafkaProducer<String, String> kafkaProducer = new KafkaProducer<String, String>(properties);
        for(int i=0;i<10;i++){
            DecimalFormat decimalFormat = new DecimalFormat("00");
            String format = decimalFormat.format(i);
            ProducerRecord<String, String> record = new ProducerRecord<>("topic01", "key" + format, "value" + format);
            kafkaProducer.send(record);
        }
        kafkaProducer.flush();
        kafkaProducer.close();
    }
}

在这里插入图片描述

发送数据

案例是从topic01读取数据发送到topic03

  • 入口类
package com.baizhi;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
@SpringBootApplication
public class KafkaApplicationDemo {
    public static void main(String[] args) {
        SpringApplication.run(KafkaApplicationDemo.class,args);
    }
}
  • 读取topic01类

从topic01读取数据,然后调用写好的业务方法 将读取的数据作为参数传送给业务成方法

package com.baizhi;
import com.baizhi.service.IOrderService;
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.kafka.annotation.KafkaListener;
import org.springframework.kafka.annotation.KafkaListeners;
import org.springframework.stereotype.Component;
@Component
public class KafkaListenerComponent {
    @Autowired
    IOrderService iOrderService;
    @KafkaListeners(value = {@KafkaListener(topicPattern = "topic01")})
    public void reciveRecored(ConsumerRecord<String,String> record){
        //System.out.println(record.value());
         iOrderService.saveOrder(record.key(),record.value()+"JiangSi Yu");
    }
}
  • 业务接口

参数是topic的键和值

package com.baizhi.service;
public interface IOrderService {
    public void saveOrder(String id,Object message);
}
  • 业务实现类

是将数据写入topic03的类 topic01数据作为参数传过来的

package com.baizhi.service.impl;
import com.baizhi.service.IOrderService;
import org.apache.kafka.clients.producer.ProducerRecord;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.kafka.core.KafkaTemplate;
import org.springframework.stereotype.Service;
import org.springframework.transaction.annotation.Transactional;
@Service
@Transactional
public class OrderService implements IOrderService {
    @Autowired
    private KafkaTemplate kafkaTemplate;

    @Override
    public void saveOrder(String id, Object message) {
        //做一些业务的处理 发送出去
        kafkaTemplate.send(new ProducerRecord("topic03",id,message));
    }
}

发送给topic数据的类 如下

package com.baizhi.jsy.transaction;
import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.ProducerConfig;
import org.apache.kafka.clients.producer.ProducerRecord;
import org.apache.kafka.common.errors.ProducerFencedException;
import org.apache.kafka.common.serialization.StringSerializer;
import java.util.Properties;
import java.util.UUID;
public class ProductKafkaTransactionnOnly {
    public static void main(String[] args) {
        //创建生产者
        Properties properties = new Properties();
        properties.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "Centos:9092");
        properties.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, StringSerializer.class.getName());
        properties.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, StringSerializer.class.getName());
        //优化参数
        properties.put(ProducerConfig.BATCH_SIZE_CONFIG, 1024 * 1024);//生产者尝试缓存记录,为每一个分区缓存一个mb的数据
        properties.put(ProducerConfig.LINGER_MS_CONFIG, 500);//最多等待0.5秒.
        //开启幂等性 acks必须是-1
        properties.put(ProducerConfig.ACKS_CONFIG,"-1");
        //允许超时最大时间
        properties.put(ProducerConfig.REQUEST_TIMEOUT_MS_CONFIG,5000);
        //失败尝试次数
        properties.put(ProducerConfig.RETRIES_CONFIG,3);
        //开幂等性  精准一次写入
        properties.put(ProducerConfig.ENABLE_IDEMPOTENCE_CONFIG,true);
        //开启事务
        properties.put(ProducerConfig.TRANSACTIONAL_ID_CONFIG,"transaction-id"+ UUID.randomUUID());
        KafkaProducer<String, String> kafkaProducer = new KafkaProducer<String, String>(properties);
        //初始化事务
        kafkaProducer.initTransactions();
        try {
            //开启事务
            kafkaProducer.beginTransaction();
            for (int i=0;i<5;i++){
                ProducerRecord<String, String> record = new ProducerRecord<>(
                        "topic01",
                        "Transaction",
                        "Test springboot 发送数据");
                kafkaProducer.send(record);
                kafkaProducer.flush();
                if (i==3){
                    //Integer b=i/0;//写错
                }
            }
            //事务提交
            kafkaProducer.commitTransaction();
        } catch (ProducerFencedException e) {
            //终止事务
            kafkaProducer.abortTransaction();
            e.printStackTrace();
        }

        kafkaProducer.close();
    }
}

创建topic03

在这里插入图片描述

读取topic03结果

在这里插入图片描述

可以直接将读取的数据返回给其他的topic (return 即可)

适用于不想对数据进行额外处理的业务场景 直接将数据发送给某个队列

从topic02中读取数据 到topic03中

package com.baizhi;
import com.baizhi.service.IOrderService;
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.kafka.annotation.KafkaListener;
import org.springframework.kafka.annotation.KafkaListeners;
import org.springframework.messaging.handler.annotation.SendTo;
import org.springframework.stereotype.Component;
@Component
public class KafkaListenerComponent {
    @Autowired
    IOrderService iOrderService;
    @KafkaListeners(value = {@KafkaListener(topicPattern = "topic01")})
    public void reciveRecored(ConsumerRecord<String,String> record){
        //System.out.println(record.value());
         iOrderService.saveOrder(record.key(),record.value()+"JiangSi Yu");
    }

    @KafkaListeners(value = {@KafkaListener(topicPattern = "topic02")})
    @SendTo("topic03")
    public String reciveRecored002(ConsumerRecord<String,String> record){
         return record.key()+"\tfrom  topic02 to topic03\t"+record.value();
    }
}

传数据到topic02中

package com.baizhi.jsy.transaction;
import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.ProducerConfig;
import org.apache.kafka.clients.producer.ProducerRecord;
import org.apache.kafka.common.errors.ProducerFencedException;
import org.apache.kafka.common.serialization.StringSerializer;

import java.util.Properties;
import java.util.UUID;

public class ProductKafkaTransactionnOnly {
    public static void main(String[] args) {
        //创建生产者
        Properties properties = new Properties();
        properties.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "Centos:9092");
        properties.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, StringSerializer.class.getName());
        properties.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, StringSerializer.class.getName());
        //优化参数
        properties.put(ProducerConfig.BATCH_SIZE_CONFIG, 1024 * 1024);//生产者尝试缓存记录,为每一个分区缓存一个mb的数据
        properties.put(ProducerConfig.LINGER_MS_CONFIG, 500);//最多等待0.5秒.

        //开启幂等性 acks必须是-1
        properties.put(ProducerConfig.ACKS_CONFIG,"-1");
        //允许超时最大时间
        properties.put(ProducerConfig.REQUEST_TIMEOUT_MS_CONFIG,5000);
        //失败尝试次数
        properties.put(ProducerConfig.RETRIES_CONFIG,3);
        //开幂等性  精准一次写入
        properties.put(ProducerConfig.ENABLE_IDEMPOTENCE_CONFIG,true);

        //开启事务
        properties.put(ProducerConfig.TRANSACTIONAL_ID_CONFIG,"transaction-id"+ UUID.randomUUID());

        KafkaProducer<String, String> kafkaProducer = new KafkaProducer<String, String>(properties);
        //初始化事务
        kafkaProducer.initTransactions();


        try {
            //开启事务
            kafkaProducer.beginTransaction();
            for (int i=0;i<5;i++){
                ProducerRecord<String, String> record = new ProducerRecord<>(
                        "topic02",
                        "Transaction",
                        "Test springboot 发送数据");
                kafkaProducer.send(record);
                kafkaProducer.flush();
                if (i==3){
                    //Integer b=i/0;//写错
                }
            }
            //事务提交
            kafkaProducer.commitTransaction();
        } catch (ProducerFencedException e) {
            //终止事务
            kafkaProducer.abortTransaction();
            e.printStackTrace();
        }

        kafkaProducer.close();
    }
}

发送数据结果如下

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值