人工智能ー算法汇总

本文详述了人工智能中的各类算法,包括监督学习、无监督学习、半监督学习、强化学习和深度学习的主要算法,如神经网络、贝叶斯、决策树、线性分类器等。同时,按照解决任务的不同,将算法分为二分类、多分类、回归、聚类和异常检测,探讨了各类算法的适用场景和特点。
摘要由CSDN通过智能技术生成

人工智能的三大基石—算法、数据和计算能力,算法作为其中之一,是非常重要的,那么人工智能都会涉及哪些算法呢?不同算法适用于哪些场景呢?

一、按照模型训练方式不同可以分为

  1. 监督学习(Supervised Learning)
  2. 无监督学习(Unsupervised Learning)
  3. 半监督学习(Semi-supervised Learning)
  4. 强化学习(Reinforcement Learning)

常见的监督学习算法:

(1)人工神经网络(Artificial Neural Network)类:

  1. 反向传播(Backpropagation)
  2. 波尔兹曼机(Boltzmann Machine)
  3. 卷积神经网络(Convolutional Neural Network)
  4. Hopfield网络(hopfield Network)
  5. 多层感知器(Multilyer Perceptron)
  6. 径向基函数网络(Radial Basis Function Network,RBFN)
  7. 受限波尔兹曼机(Restricted Boltzmann Machine)
  8. 回归神经网络(Recurrent Neural Network,RNN)
  9. 自组织映射(Self-organizing Map,SOM)
  10. 尖峰神经网络(Spiking Neural Network)等

(2)贝叶斯类(Bayesin):

  1. 朴素贝叶斯(Naive Bayes)
  2. 高斯贝叶斯(Gaussian Naive Bayes)
  3. 多项朴素贝叶斯(Multinomial Naive Bayes)
  4. 平均-依赖性评估(Averaged One-Dependence Estimators,AODE)
  5. 贝叶斯信念网络(Bayesian Belief Network,BBN)
  6. 贝叶斯网络(Bayesian Network,BN)等

(3)决策树(Decision Tree)类:

  1. 分类和回归树(Classification and Regression Tree,CART)
  2. 迭代Dichotomiser3(Iterative Dichotomiser 3, ID3)
  3. C4.5算法(C4.5 Algorithm)
  4. C5.0算法(C5.0 Algorithm)
  5. <
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值