人工智能的三大基石—算法、数据和计算能力,算法作为其中之一,是非常重要的,那么人工智能都会涉及哪些算法呢?不同算法适用于哪些场景呢?
一、按照模型训练方式不同可以分为
- 监督学习(Supervised Learning)
- 无监督学习(Unsupervised Learning)
- 半监督学习(Semi-supervised Learning)
- 强化学习(Reinforcement Learning)
常见的监督学习算法:
(1)人工神经网络(Artificial Neural Network)类:
- 反向传播(Backpropagation)
- 波尔兹曼机(Boltzmann Machine)
- 卷积神经网络(Convolutional Neural Network)
- Hopfield网络(hopfield Network)
- 多层感知器(Multilyer Perceptron)
- 径向基函数网络(Radial Basis Function Network,RBFN)
- 受限波尔兹曼机(Restricted Boltzmann Machine)
- 回归神经网络(Recurrent Neural Network,RNN)
- 自组织映射(Self-organizing Map,SOM)
- 尖峰神经网络(Spiking Neural Network)等
(2)贝叶斯类(Bayesin):
- 朴素贝叶斯(Naive Bayes)
- 高斯贝叶斯(Gaussian Naive Bayes)
- 多项朴素贝叶斯(Multinomial Naive Bayes)
- 平均-依赖性评估(Averaged One-Dependence Estimators,AODE)
- 贝叶斯信念网络(Bayesian Belief Network,BBN)
- 贝叶斯网络(Bayesian Network,BN)等
(3)决策树(Decision Tree)类:
- 分类和回归树(Classification and Regression Tree,CART)
- 迭代Dichotomiser3(Iterative Dichotomiser 3, ID3)
- C4.5算法(C4.5 Algorithm)
- C5.0算法(C5.0 Algorithm) <