23年6月,在研究文章《Deep Learning Regional Climate Model Emulators: A Comparison of Two Downscaling Training Frameworks》中,Marijn van der Meer等人开拓了气候模型研究的新篇章。该研究通过比较两种创新的深度学习训练框架,展示了如何有效地降低区域气候模型(RCM)的高计算成本。在传统的全球气候模型(GCM)中,由于空间分辨率的局限,难以捕捉到局部力量的影响和复杂地表区域的细微变化。而RCM则提供了更高的空间分辨率,但其计算成本相对较高。研究团队通过模拟南极半岛的表面质量平衡(SMB),探讨了利用机器学习作为动态降尺度的替代方案的潜力。
文章中介绍的两种训练框架,一种是基于完美模型的训练,另一种则是接受GCM和RCM间不一致性的非完美模型训练。这项研究不仅在技术层面上取得了突破,而且对于未来气候模型的发展和应用提供了新的视角。
数据及方法:
选择了CMIP5和r1i1p1集合中的大气变量数据集(Amon)。时间范围包括历史和未来RCP8.5模拟,这些模拟是每日值的月均值聚合。选取的这组全球气候模型(GCM)数据包括8个变量,接着将数据范围切割,只包含南纬40度至90度之间的区域,即南极地区。由于GCM使用的是纬度-经度坐标,而区域气候模型(RCM)使用的是极地立体投影坐标,因此需要将GCM数据重新投影到RCM坐标系统。
文章中选取的全球气候模型(GCM)数据集包括以下八个变量: 北向风,东向风,短波向下辐射,长波向下辐射,比湿,温度,这些变量作为区域气候模型(RCM)仿真器的二维输入特征。
图1 RCM 仿真器概念
-
U-Net模型架构:该研究使用了U-Net模型(U形卷积神经网络),分为下采样(编码器)部分和上采样(解码器)部分。在这种网络中,输入数组通过一系列层进行处理,每层应用过滤器。每个过滤器的输出是一个特征图(表示输入图像学习到的特征的多维数值数组),这个特征图然后被用作下一层神经网络的输入。RCM仿真器的编码器包含双重深度可分离卷积(DSC)后跟最大池化过滤器,这减小了低分辨率2D输入变量的大小并增加了通道数。
-
两种训练框架的比较:研究提出并比较了两种训练场景,用于使用RCM仿真器架构降尺度GCMs:(a) 完美模型框架和 (b) 非完美模型框架。这两种框架在用于训练RCM仿真器的气候模型方面有所不同。
-
完美模型框架:在这个框架中,第一个RCM仿真器根据完美模型框架进行训练,其低分辨率训练输入是来自同一RCM的放大特征。该框架评估了仿真器仅学习RCM的降尺度功能时的表现,避免了学习RCM/GCM特有的局部/大尺度特征之间的关系,从而规避了GCM和RCM变量之间潜在的大尺度不一致性。
-
非完美模型框架:在这个框架中,第二个RCM仿真器的低分辨率训练输入是GCM特征。这个框架允许在训练期间RCM输出和GCM输入之间存在空间和时间上的不一致。该框架的表现评估了RCM仿真器是否能够尽管存在不一致性也能从GCM降尺度到RCM。一个潜在的优势是,它学习了降尺度功能和GCM/RCM关系,因此可以直接从GCM输出生成RCM输出。
-
结果:
图2 RCM仿真器在随机月份(1980年5月)和测试期(2090-2100年)平均的表面质量平衡(SMB)预测
图2揭示了不同训练框架下的RCM仿真器在模拟SMB方面的表现差异;图3提供了一个全面的性能评估,显示了不同训练框架下的RCM仿真器在预测SMB方面的准确性和一致性。
图3 用于评估RCM仿真器在完美和非完美模型框架下性能的三种统计指标
总之,本文构建了一个深度学习的区域气候模型(RCM)仿真器,用以代替计算成本高昂的全球气候模型(GCM)动态降尺度。RCM仿真器能够从GCM的大尺度(低分辨率)气候变量中重构出RCM的局部尺度(高分辨率)的表面质量平衡(SMB)图像,且计算速度比直接运行RCM快得多。研究提出了两种RCM仿真器训练框架:完美模型和非完美模型。完美模型框架让仿真器仅学习RCM的降尺度功能,而非完美模型框架让仿真器直接使用来自GCM的特征进行训练,评估其在存在RCM-GCM不一致性时的预测准确性。
结果显示,在非完美模型框架下训练的RCM仿真器能够准确重现高分辨率的SMB图,表现出良好的年度SMB预测和时间模式重构能力。因此,这种RCM仿真器可作为一种低成本、高分辨率的气候变量提供工具。
文章来源:
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2022MS003593