基于matlab使用机器学习和深度学习进行雷达目标分类(附源码)

该博客演示了如何使用机器学习(支持向量机)和深度学习(SqueezeNet、LSTM)方法对雷达回波进行圆柱体和锥体目标分类。通过小波散射特征提取,结合预处理和模型训练,实现了高精度的分类效果。文章提供Matlab源码供读者实践。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、前言

此示例展示了如何使用机器学习和深度学习方法对雷达回波进行分类。机器学习方法使用小波散射特征提取与支持向量机相结合。此外,还说明了两种深度学习方法:使用SqueezeNet的迁移学习和长短期记忆(LSTM)递归神经网络。请注意,此示例中使用的数据集不需要高级技术,但描述了工作流,因为这些技术可以扩展到更复杂的问题。

二、介绍

目标分类是现代雷达系统的重要功能。此示例使用机器学习和深度学习对圆柱体和锥体的雷达回波进行分类。虽然此示例使用合成的I/Q样本,但工作流程适用于实际雷达回波。

三、RCS 合成

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

珞瑜·

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值