题目:
平面空间中有若干条直线,每条直线的方程可以写作,现在有两种操作。
- op=0,插入一条方程为的直线。
- op=1,给定一个正整数x, x∈[1,N],查询现在所有直线中令x=x′时,y′的最大值和最小值。
给定n和m,n为x属于[1,n],m为操作的次数。
样例:
输入:
10 5
0 1 2
0 -1 2
1 1
1 2
1 10
输出:
3 1
4 0
12 -8
代码:
#include<bits/stdc++.h>
using namespace std;
const int MAXN=1000005;
struct Lin
{
long long k,b;
long long val(long long x)
{
return k*x+b;
}
Lin(long long _k=0,long long _b=0)
{
k=_k;
b=_b;
}
};
double Lin_cross_x(const Lin&A,const Lin&B)
{
return (B.b-A.b)*1.0/(A.k-B.k);
}
const long long INF=(long long)1e18;
struct LiChao_Segmenttree
{
long long cross_x(const Lin&A,const Lin&B)
{
return (B.b-A.b)/(A.k-B.k);
}
struct tree_node
{
int l,r;
bool vis;
bool has_lin;
Lin lin;
}t[4*MAXN];
void build(int l,int r,int root=1)
{
t[root].l=l;
t[root].r=r;
t[root].vis=false;
t[root].has_lin=false;
if(l!=r)
{
int mid=(l+r)>>1;
int ch=root<<1;
build(l,mid,ch);
build(mid+1,r,ch+1);
}
}
void insert(Lin x,int l,int r,int root=1)
{
t[root].vis=true;
if(l==t[root].l&&r==t[root].r)
{
if(!t[root].has_lin)
{
t[root].has_lin=true;
t[root].lin=x;
return;
}
if(t[root].lin.val(t[root].l)>=x.val(t[root].l)&&t[root].lin.val(t[root].r)>=x.val(t[root].r))
{
return;
}
if(t[root].lin.val(t[root].l)<x.val(t[root].l)&&t[root].lin.val(t[root].r)<x.val(t[root].r))
{
t[root].lin=x;
return;
}
int mid=(t[root].l+t[root].r)>>1;
int ch=root<<1;
if(cross_x(x,t[root].lin)<=mid)
{
if(x.k<t[root].lin.k)
{
insert(x,l,mid,ch);
}
else
{
insert(t[root].lin,l,mid,ch);
t[root].lin=x;
}
}
else
{
if(x.k>t[root].lin.k)
{
insert(x,mid+1,r,ch+1);
}
else
{
insert(t[root].lin,mid+1,r,ch+1);
t[root].lin=x;
}
}
}
else
{
int mid=(t[root].l+t[root].r)>>1;
int ch=root<<1;
if(r<=mid)
{
insert(x,l,r,ch);
}
else if(l>mid)
{
insert(x,l,r,ch+1);
}
else
{
insert(x,l,mid,ch);
insert(x,mid+1,r,ch+1);
}
}
return;
}
void clear(int root=1)
{
t[root].vis=false;
t[root].has_lin=false;
if(t[root].l!=t[root].r)
{
int ch=root<<1;
if(t[ch].vis)
{
clear(ch);
}
if(t[ch+1].vis)
{
clear(ch+1);
}
}
return;
}
long long get_val(int x,int root=1)
{
if(!t[root].vis)return -INF;
long long ret;
if(!t[root].has_lin)
{
ret=-INF;
}
else
{
ret=t[root].lin.val(x);
}
if(t[root].l==t[root].r)return ret;
int ch=root<<1;
int mid=(t[root].l+t[root].r)>>1;
if(x<=mid)
{
return max(ret,get_val(x,ch));
}
else
{
return max(ret,get_val(x,ch+1));
}
}
}seg_up,seg_down;
int n,m,op,k,b,x;
int main()
{
scanf("%d %d",&n,&m);
seg_up.build(1,n);
seg_down.build(1,n);
while(m--)
{
scanf("%d",&op);
if(op==0)
{
scanf("%d %d",&k,&b);
seg_up.insert(Lin(k,b),1,n);
seg_down.insert(Lin(-k,-b),1,n);
}
else
{
scanf("%d",&x);
printf("%lld %lld\n", seg_up.get_val(x),-seg_down.get_val(x));
}
}
return 0;
}