李超线段树

题目:

平面空间中有若干条直线,每条直线的方程可以写作y=k_i\times x+b_i,现在有两种操作。

  1. op=0,插入一条方程为y'=k_i\times x'+b_i的直线。
  2. op=1,给定一个正整数x, x∈[1,N],查询现在所有直线中令x=x′时,y′的最大值和最小值。

给定n和m,n为x属于[1,n],m为操作的次数。 

样例:

输入:

10 5
0 1 2
0 -1 2
1 1
1 2
1 10

输出:

3 1
4 0
12 -8

代码:

#include<bits/stdc++.h>
using namespace std;
const int MAXN=1000005;
struct Lin
{
    long long k,b;
    long long val(long long x)
    {
        return k*x+b;
    }
    Lin(long long _k=0,long long _b=0)
    {
        k=_k;
        b=_b;
    }
};
double Lin_cross_x(const Lin&A,const Lin&B)
{
    return (B.b-A.b)*1.0/(A.k-B.k);
}
const long long INF=(long long)1e18;
struct LiChao_Segmenttree
{
    long long cross_x(const Lin&A,const Lin&B)
    {
        return (B.b-A.b)/(A.k-B.k);
    }
    struct tree_node
    {
        int l,r;
        bool vis;
        bool has_lin;
        Lin lin;
    }t[4*MAXN];
    void build(int l,int r,int root=1)
    {
        t[root].l=l;
        t[root].r=r;
        t[root].vis=false;
        t[root].has_lin=false;
        if(l!=r)
        {
            int mid=(l+r)>>1;
            int ch=root<<1;
            build(l,mid,ch);
            build(mid+1,r,ch+1);
        }
    }
    void insert(Lin x,int l,int r,int root=1)
    {
        t[root].vis=true;
        if(l==t[root].l&&r==t[root].r)
        {
            if(!t[root].has_lin)
            {
                t[root].has_lin=true;
                t[root].lin=x;
                return;
            }
            if(t[root].lin.val(t[root].l)>=x.val(t[root].l)&&t[root].lin.val(t[root].r)>=x.val(t[root].r))
            {
                return;
            }
            if(t[root].lin.val(t[root].l)<x.val(t[root].l)&&t[root].lin.val(t[root].r)<x.val(t[root].r))
            {
                t[root].lin=x;
                return;
            }
            int mid=(t[root].l+t[root].r)>>1;
            int ch=root<<1;
            if(cross_x(x,t[root].lin)<=mid)
            {
                if(x.k<t[root].lin.k)
                {
                    insert(x,l,mid,ch);
                }
                else
                {
                    insert(t[root].lin,l,mid,ch);
                    t[root].lin=x;
                }
            }
            else
            {
                if(x.k>t[root].lin.k)
                {
                    insert(x,mid+1,r,ch+1);
                }
                else
                {
                    insert(t[root].lin,mid+1,r,ch+1);
                    t[root].lin=x;
                }
            }
        }
        else
        {
            int mid=(t[root].l+t[root].r)>>1;
            int ch=root<<1;
            if(r<=mid)
            {
                insert(x,l,r,ch);
            }
            else if(l>mid)
            {
                insert(x,l,r,ch+1);
            }
            else
            {
                insert(x,l,mid,ch);
                insert(x,mid+1,r,ch+1);
            }
        }
        return;
    }
    void clear(int root=1)
    {
        t[root].vis=false;
        t[root].has_lin=false;
        if(t[root].l!=t[root].r)
        {
            int ch=root<<1;
            if(t[ch].vis)
            {
                clear(ch);
            }
            if(t[ch+1].vis)
            {
                clear(ch+1);
            }
        }
        return;
    }
    long long get_val(int x,int root=1)
    {
        if(!t[root].vis)return -INF;
        long long ret;
        if(!t[root].has_lin)
        {
            ret=-INF;
        }
        else
        {
            ret=t[root].lin.val(x);
        }
        if(t[root].l==t[root].r)return ret;
        int ch=root<<1;
        int mid=(t[root].l+t[root].r)>>1;
        if(x<=mid)
        {
            return max(ret,get_val(x,ch));
        }
        else
        {
            return max(ret,get_val(x,ch+1));
        }
    }
}seg_up,seg_down;
int n,m,op,k,b,x;
int main()
{
    scanf("%d %d",&n,&m);
    seg_up.build(1,n);
    seg_down.build(1,n);
    while(m--)
    {
        scanf("%d",&op);
        if(op==0)
        {
            scanf("%d %d",&k,&b);
            seg_up.insert(Lin(k,b),1,n);
            seg_down.insert(Lin(-k,-b),1,n);
        }
        else
        {
            scanf("%d",&x);
            printf("%lld %lld\n", seg_up.get_val(x),-seg_down.get_val(x));
        }
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值