文章目录
图的定义和术语
图:G(V,E)。
V:顶点(数据元素)的有穷非空集合。
E:边的有穷集合。
完全图:任意两个点都有一条边相连。
稀疏图:有很少边或者弧的图(e<nlogn)。
稠密图:有较多边或弧的图。
网:边/弧带权的图。
邻接:有边/弧相连的两个顶点之间的关系。存在(vi,vj)则称vi,vj互为邻接点;存在<vi,vj>则称vi邻接到vj,vj邻接于vi。
关联(依附):边/弧与顶点间的关系:存在(vi,vj)/<vi,vj>,则称该边/弧关联于vi和vj。
顶点的度:与该顶点相关联的边的数目。在有向图中,顶点的度等于该顶点的入度与出度之和。
路径:接续的边构成的顶点序列。
路径长度:路径上边或弧的数目/权值之和。
回路(环):第一个顶点和最后一个顶点相同的路径。
简单路径:除路径起点和终点可以相同外,其余顶点均不相同的路径。
简单回路:除起点和终点相同外,其余顶点均不相同的路径。
连通图:在无(有)向图G=(V,{E})中,若对任何两个顶点v,u都存在从v到u的路径,则称G是连通图(强连通图)。
子图设有两个图G=(V,{E}),G1=(V1,{E1}),若V1…