二分图题目

题目:LC785 判断二分图

二分图:指每条边都连接着两个不同区域。

等价:

边两端的节点不同颜色,只有两个颜色。

解题

解法1:dfs

深度优先遍历,记录访问过的节点和颜色,遍历图节点

        如果访问过且颜色和源节点一样,就不是二分图

        如果没访问过,就赋予不同的颜色。

遍历完没有冲突就是二分图。

class Solution {
public:
    bool res; // 是不是二分图
    vector<bool> visited;
    vector<bool> color; // 记录颜色
    bool isBipartite(vector<vector<int>>& graph) {
        int n = graph.size();
        res = true;
        visited = vector<bool>(n, false);
        color = vector<bool>(n, false);
        for (int i = 0; i < n; i++) {
            if (!visited[i])
                trace(graph, i);
        }
        return res;
    }
    void trace(vector<vector<int>>& graph, int now) {
        if (!res)   return;

        visited[now] = true;
        for (auto next : graph[now]) {
            if (!visited[next]) {
                color[next] = !color[now];
                trace(graph, next);
            } else {
                if (color[next] == color[now])
                    res = false;
            }
        }
    }
};

复杂度

  • 时间:O(n+edge)
  • 空间:O(n)

解法2:并查集

如果边的两端节点已经属于同一个集合,就不是二分图。因为二分图的定义就是边的两端属于不同集合。

1. 遍历所有节点,把当前节点的临边节点放在一个集合里,因为当前节点一定要与临边节点在不同集合,也就是临边节点在同一个集合。

2. 最后再检查一遍,当前节点 有没有和临边节点在同一个集合。

class Solution {
public:
    vector<int> fa;
    int father(int a) {
        if (a != fa[a])
            fa[a] = father(fa[a]);
        return fa[a];
    }
    void unionn(int a, int b) { fa[father(a)] = father(b); }
    bool same(int a, int b) { return father(a) == father(b); }
    bool isBipartite(vector<vector<int>>& graph) {
        int n = graph.size();
        for (int i = 0; i < n; ++i) {
            fa.push_back(i);
        }
        for (int i = 0; i < n; ++i) {
            for (int j = 1; j < graph[i].size(); ++j) {
                unionn(graph[i][0], graph[i][j]);
            }
        }
        for (int i = 0; i < n; ++i) {
            for (int j = 0; j < graph[i].size(); ++j) {
                if (same(i, graph[i][j]))
                    return false;
            }
        }
        return true;
    }
};

复杂度

  • 时间:O(n+edge)
  • 空间:O(n)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值