Java题目:一个偶数总能表示为两个素数之和。(哥德巴赫猜想)

本文介绍了哥德巴赫猜想的基本概念,以及一个简单的Java程序演示如何判断一个偶数能否表示为两个素数之和。陈景润和哈洛德·贺欧夫各特的贡献也被提及,前者证明了1+2版本,后者解决了弱哥德巴赫猜想。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

哥德巴赫猜想

哥德巴赫猜想是指任何一个大于2的偶数都可以表示为两个素数之和。这个猜想最早出现在1742年普鲁士人克里斯蒂安·哥德巴赫与瑞士数学家莱昂哈德·欧拉的通信中。虽然哥德巴赫自己无法证明它,欧拉也无法证明,但欧拉在回信中提出了一个等价版本,即任一大于2的偶数都可写成两个质数之和。这个猜想与整数分拆问题有一定联系,也属于希尔伯特第八问题中的一个子问题。在数学界,哥德巴赫猜想一直未被证明,但在1966年,陈景润证明了“1+2”成立,即“任一充分大的偶数都可以表示成二个素数的和,或是一个素数和一个半素数的和”。哈洛德·贺欧夫各特在2013年发表了两篇论文,宣布彻底证明了弱哥德巴赫猜想,即任何一个大于7的奇数都能被表示成三个奇质数的和。

package test6;

import java.util.Scanner;

public class Test1 {

    /**
     * 题目:一个偶数总能表示为两个素数之和。
     * //由于用除sqrt(n)的方法求出的素数不包括2和3,
     * //因此在判断是否是素数程序中人为添加了一个
     */

    public static void main(String[] args) {
        Scanner sc = new Scanner(System.in);
        System.out.println("请输入一个偶数:");
        int num = sc.nextInt();
        // 此处的次数在偶数数值的一半即可
        for (int i = 2; i < num / 2; i++) {
            if (judgment(i) && judgment(num - i)) {
                System.out.println(num + " = " + i + " + " + (num - i));
            }
        }
        sc.close();
    }

    public static boolean judgment(int n) {

        boolean flag = true;
        if (n==2||n==3) {
            flag = true;
        }
        for (int i = 2; i <= Math.sqrt(n); i++) {
            // 判断素数的方法:用一个数分别去除2到sqrt(这个数)
            if (n % i == 0) {
                // 如果可以整除,则不是素数,返回值为false
                flag = false;
            }
        }
        return flag;// 循环结束,没有中途返回值,则为素数,返回值为true
    }


}

费马大定理指出,对于所有大于2的整数n,不存在三个正整数a、bc使得a^n + b^n = c^n。然而,这个结论并不意味着每个偶数都能表示两个质数的,只有当n等于2时,才有这样的情况。著名的哥德巴赫猜想提出,每一个大于2的偶数都可以表示两个质数之和,尽管目前尚未得到证明,它已被大量数值检验所支持。 在Java中,验证一个偶数是否可以表示两个质数之和,通常需要一个复杂的算法来搜索这样的分解。你可以编写一个函数,比如使用埃拉托斯特尼筛法生成一定范围内的质数,然后尝试将给定的偶数减去已知的质数,看是否有另一个质数满足条件。但这需要计算量较大,并非简单的数学操作。 ```java import java.util.ArrayList; import java.util.List; public class PrimeSum { public static boolean canBeExpressedAsPrimeSum(int evenNumber) { List<Integer> primes = sieveOfEratosthenes(oddLimit(evenNumber)); for (int prime : primes) { if (evenNumber - prime > 0 && isPrime(evenNumber - prime)) { return true; } } return false; } private static int oddLimit(int n) { // 计算到n的一半即可,因为如果n是偶数,不可能是两个奇数之和 return n / 2 + 1; } private static boolean isPrime(int num) { if (num <= 1) return false; for (int i = 2; i * i <= num; i++) { if (num % i == 0) return false; } return true; } // 筛选质数,这里仅用于演示,实际应用会更高效 private static List<Integer> sieveOfEratosthenes(int limit) { List<Integer> primes = new ArrayList<>(); boolean[] isComposite = new boolean[limit]; for (int i = 2; i * i < limit; i++) { if (!isComposite[i]) { for (int j = i * i; j < limit; j += i) { isComposite[j] = true; } } } for (int i = 2; i < limit; i++) { if (!isComposite[i]) primes.add(i); } return primes; } } ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值