#**机器学习之K邻近算法代码实现以及详细解释****

import numpy as np
import operator

def createDataSet():
    group=np.array([[3,104],[2,100],[101,10],[99,5]])
    labels=['爱情片','爱情片','动作片','动作片']
    return group,labels

def classify0(inX,dataSet,labels,k):
    #输入向量是inX,输入的训练样本集是dataSet,标签向量为labels,用于选择最近邻居的数目
    dataSetSize=dataSet.shape[0]
    #确定数据维数 (shape)
    diffMat=np.tile(inX,(dataSetSize,1))-dataSet
    #tile表示将inX复制dataSetSize行 1列 然后减去dataSet
    #计算距离差
    sqDiffMat=diffMat**2
    # **表示乘方
    sqDistances=sqDiffMat.sum(axis=1)
    #.sum(axis=1)表示将矩阵每一行的元素相加
    distances=sqDistances**0.5
    sortedDistIndicies=distances.argsort()
    #argsort函数返回的是数组值从小到大的索引值
    classCount={}
    for i in range(k):
        voteIlabel=labels[sortedDistIndicies[i]]
        classCount[voteIlabel]=classCount.get(voteIlabel,0)+1
        #get()方法语法:dict.get(key, default=None)。key-字典中要查找的键。default-如果指定键的值不存在时,返回该默认值
        # items()方法把字典中每对key和value组成一个元组,并把这些元组放在列表中返回
    sortedClassCount=sorted(classCount.items(),key=operator.itemgetter(1),reverse=True)
    #Python内置的排序函数sorted可以对list或者iterator进行排序
    #sorted(iterable[, cmp[, key[, reverse]]])
    #iterable指定要排序的list或者iterable
    #cmp为函数,指定排序时进行比较的函数,可以指定一个函数或者lambda函数
    #key为函数,指定取待排序元素的哪一项进行排序
    #.itemgetter(1)按照第二个元素的次序对元组进行排序
    #reverse参数就是一个bool变量,表示升序还是降序排列,默认为false(升序排列),定义为True时将按降序排列
    return sortedClassCount[0][0]

if __name__ == '__main__':
   #创建数据集
   group, labels = createDataSet()
   #测试集
   test = [1,81]
   #kNN分类
   test_class = classify0(test, group, labels, 3)
   #打印分类结果
   print(test_class)
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值