- 博客(13)
- 收藏
- 关注
原创 Python 李查逊/Richardson加速外推法
代码# 返回函数在某点某h下的导数值def fun(x_1, h): def fun_1(x): return 1 / (x + 1) return (fun_1(x_1 + h) - fun_1(x_1 - h)) / (2 * h)# 待求值点x_n = float(input('请输入待求导点:'))# 存放积分结果的精度要求precision = 10 ** int('-' + input('请输入求积精度10^-(输入值):'))f = [] #
2020-10-29 15:47:29 1755
原创 Python 龙贝格/Romberg算法
代码# 用于储存函数,返回函数值def fun(x): return 1 / (x + 1)# 存放求积分范围Min = float(input('请输入求积分下限:'))Max = float(input('请输入求积分上限:'))Mid = Max - Min# 存放积分结果的精度要求precision = 10 ** int('-'+input('请输入求积精度10^-(输入值):'))# 用于存放 T S C R 的计算结果T = [[j for j in [0,
2020-10-29 15:47:06 2652 1
原创 Python 曲线拟合的最小二乘法
模块导入import numpy as npimport gaosi as gs代码"""本函数通过创建增广矩阵,并调用高斯列主元消去法模块进行求解。"""import numpy as npimport gaosi as gsshape = int(input('请输入拟合函数的次数:'))x = np.array([0.6,1.3,1.64,1.8,2.1,2.3,2.44])y = np.array([7.05,12.2,14.4,15.2,17.4,19.6,20.2]
2020-10-27 18:53:39 1110
原创 Python 三次样条插值法
代码'''本函数通过三次样条插值法进行函数值计算'''# 三次样条插值import numpy as np# 用于存放x,y,m的值x = np.array([1,2,4,5])y = np.array([1,3,4,2])m = np.array([17/8,None,None,-19/8])lens = len(x)x_f = 3.0 # 待插值点# 用于存放几种数据h = np.zeros(lens-1)a = np.zeros(lens)b = np.z
2020-10-27 18:51:16 5685 3
原创 Python 牛顿(Newton)插值法
Python 牛顿/Newton插值法代码代码"""本函数用于通过牛顿插值法计算某点的函数值先计算函数每一级的差商,然后计算函数值"""# 存放自变量x的值 data 用于存放函数值以及差商x = [0,2,3,5,6]data = [[0,8,27,125,216]]# 用于存放待求值点 以及 计算结果x_f = 5.5fun = 0# 计算每一级的差商for i in range(1, len(x)): f = [] for k in range(len(
2020-10-27 18:50:02 4538 1
原创 Python 拉格朗日(Language)插值法
Python 拉格朗日/Language插值法代码代码"""本函数用于通过Language插值法求函数在某点的值"""# 自变量的值以及f(x)的值x = [0.1,0.2,0.3]y = [1.10517,1.22140,1.34986]# 待计算的x值x_f = float(input('请输入想要插值的点:'))# 最终结果fun = 0if len(x) != len(y): print('自变量与函数值不匹配!') exit()# 根据自变量取点个
2020-10-27 18:48:18 684 1
原创 Python 线性方程组求解的雅可比迭代法/高斯-赛德尔迭代法
Python 线性方程组求解的雅可比迭代法/高斯-赛德尔迭代法代码代码"""求解线性方程组 5*x_1 - x_2 + x_3 = 10 2*x_1 - 8*x_2 - x_3 = 11 -x_1 + x_2 + 4*x_3 = 3初值为 x1 = x2 = x3 = 0""""""雅可比迭代法"""def jacobi_iteration(): x1 = x2 = x3 = 0 x1_next = (x2 - x3 + 10) /
2020-10-27 18:44:50 2821 1
原创 Python 方程组求解的三角分解法
Python 方程组求解的三角分解法模块代码模块import numpy as np代码import numpy as npdef matrix_deal(matrix): lens = len(matrix) # 创建两个全零的矩阵,大小与待求解矩阵相同 matrix_l = np.zeros((lens,lens),dtype=float) matrix_u = np.zeros((lens,lens),dtype=float) # 将左矩阵对角线
2020-10-27 18:42:29 1724
原创 Python 简单迭代法/Newton迭代法/弦截法 求方程的根
Python 简单迭代法/Newton迭代法/弦截法 求方程的根模块导入直接上代码模块导入import math直接上代码"""迭代方程为:e^x-x^2+3*x-2=0构建函数方程 fun = math.exp(x)-x**2+3*x-2方程导数 fun_dc = math.exp(x)-2*x+3迭代初值 x = 0"""import math"""简单迭代法"""def easy_iteration(x): x_next = (x ** 2 - math.exp(
2020-10-27 18:38:13 6627 2
原创 Python 方程求根的二分法
Python 方程求根的二分法模块导入直接上代码模块导入import math直接上代码# 导入math模块import math# 限定求根范围的最大最小值MIN = 0MAX = 5#i = 0# 创建MID的函数值逼近0的永循环'''求根函数为 e^x+10x-2 = 0 '''while True: #i += 1 MID = (MIN + MAX) / 2 # 计算中值 fun_min = math.exp(MIN) + 10 *
2020-10-27 18:33:38 7939
原创 Python 高斯列主元消去法求增广矩阵/方程组的解 Numpy模块
PYthon 高斯列主元消去法求增广矩阵/方程组的解 Numpy模块“对 A * X = B” 矩阵的阶数不限模块导入直接上代码“对 A * X = B” 矩阵的阶数不限可通过修改 a 的值来改变Aa = np.array([[2, 1, 1], [3, 1, 2], [1, 2, 2]],dtype=float)可通过修改 b 的值来修改Bb = np.array([[4],[6],[5]],dtype=float)模块导入import numpy as np直接上代码
2020-10-27 18:29:45 2230
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人