汉诺塔(Hanoi Tower),又称河内塔,是一个源于印度古老传说的益智玩具。 大梵天创造世界的时候做了三根金刚石柱子,在一根柱子上从下往上按照大小顺序摞着64片黄金圆盘。大梵天命令婆罗门把圆盘从下面开始按大小顺序重新摆放在另一根柱子上。并且规定,在小圆盘上不能放大圆盘,在三根柱子之间一次只能移动一个圆盘。
问应该如何操作?
//为了方便理解这里我们用盘子来解释
(1) 当只有一个盘子时
只需要把A--->C
(2)两个盘子
A--->B,A--->C,B--->C
(3) 三个盘子
这个时候就需要思考一下
A--->C,A--->B
C--->B,A--->C
B--->A,B--->C,A--->C
到3个盘子,步骤就开始变复杂起来,我们观察发现
1个盘子移动了1次 2^1-1=1
2个盘子移动了3次 2^2-1=3
3个盘子移动了7次 2^3-1=7
....
64个盘子,2^64-1
3个盘子在移动时,先把2个移动到B上,然后把最下面的移动到C上
n个盘子在移动时,先把n-1个移动到B上
经过这样的分析,问题规模由n变成了n-1,两次挪n-1个盘子的过程加一个直接move的过程
//汉罗塔
//从pose1位置移动到pose2位置
public static void move(char pose1,char pose2){
System.out.print(pose1+"->"+pose2+" ");
}
/*
n 盘子个数
pos1 A盘,pos2 B盘,pos3 C盘
起始位置,中间位置,目的地位置
*/
public static void hanoi(int n,char pos1,char pos2,char pos3){
if(n==1){
move(pos1,pos3);
}else{
hanoi(n-1,pos1,pos3,pos2);//把n-1个盘子都放到目的地B盘上
move(pos1,pos3);
hanoi(n-1,pos2,pos1,pos3);//再把n-1盘子都放到目的地C盘上
}
}
public static void main(String[] args) {
hanoi(1,'A','B','C');
System.out.println();
hanoi(2,'A','B','C');
System.out.println();
hanoi(3,'A','B','C');
System.out.println();
hanoi(4,'A','B','C');
}
一只青蛙一次可以跳上1级台阶,也可以跳上2级。求该青蛙跳上一个n级的台阶总共有多少种跳法(先后次序不同算不同的结果)。
-
如果n=1,只有一种跳法,那就是1
-
如果n=2,那么有两种跳法,2,[1,1]
-
如果n=3,那么有三种跳法,[1,1,1],,[1,2],[2,1]
-
如果n=4,那么有五种跳法,[1,1,1,1],[1,1,2],[1,2,1],[2,1,1],[2,2]
-
如果n=5,那么有八种跳法,[1,1,1,1,1],[1,1,1,2],[1,1,2,1],[1,2,1,1],[2,1,1,1],[2,2,1],[2,1,2],[1,2,2]
和斐波那契数列非常像
当n>2时,第一次跳的时候就有两种不同的选择:一是第一次仅跳1级,此时跳法树木等于后面剩余n-1阶台阶的跳法数目,即为f(n-1);还有一种选择是第一次跳2级,此时跳法数目等于后面剩下n-2级台阶的跳法数目,即为f(n-2)
public static int JumpFloor(int target){
if(target==1){
return 1;
}else if(target==2){
return 2;
}else{
return JumpFloor(target-1)+JumpFloor(target-2);
}
}
public static void main(String[] args) {
int ret = JumpFloor(4);
System.out.println(ret);
}