3、Python实现描述性统计的内容。
一、python 安装
python官网下载: https://www.python.org/downloads/
我使用的电脑是mac,如果有windows系统请自行百度。
二、安装过程
2.1 安装python过程
Mac自带python软件,可以在终端中查看python的版本
- 点开终端后,输入python3,有如下内容,则为安装完python3版本。

- 如出现一下图片,则没有安装python文件

2.2pandas和numpy环境安装;
2.2.0检查是否存在python的安装包 - 输入pip list,显示如下图,则无python的安装包

2.2.1需要先添加pip的安装包,具体如下:
在终端中输入以下命令
第一步:
curl 'https://bootstrap.pypa.io/get-pip.py' > get-pip.py
第二步:
sudo python get-pip.py
第三步:
sudo easy_install pip
2.2.3 pandas的安装环境
python3 -m pip install pandas
2.2.4 安装numpy
sudo pip install --ignore-installed numpy
2.2.5 升级pip
pip install --upgrade pip
三、Python实现描述性统计的内容
3.1.1 读取Excel文件
>>> import pandas as pd
>>>df=pd.read_excel(r'路径')
集中趋势
>>> #描述性统计
print('描述性统计:',date.describe())
描述性统计: count 699.000000
mean 4.417740
std 2.815741
min 1.000000
25% 2.000000
50% 4.000000
75% 6.000000
max 10.000000
Name: data, dtype: float64
或者使用以下方法
#众数
>>> print('众数为:',date.mode())
众数为: 0 1
#均值
>>>print('均值:',date.mean())
均值: 4.417739628040057
dtype: int64
#中位数
>>>print('中位数:',date.quantile(0.5))
#或者
print('中位数为:',data.median())
上四分位数: 4.0
#最大值
>>> print('最大值:',date.max())
最大值: 10
#极差
>>>print('极差:',date.max()-date.min())
极差: 9
>>> print('下四分位数:',date.quantile(0.25))
>>> print('上四分位数:',date.quantile(0.75))
>>> print('四分位差:',date.quantile(0.75)-date.quantile(0.25))
四分位差: 4.0
>>> #方差
print('方差为:',date.var())
>>> #标准差
print('标准差为:',date.std())
>>>#偏度
print('偏度为:',date.skew())
>>>#峰度
print('峰度为:',date.kurt())
>>>#变异系数
print('变异系数为:',date.mean()/date.std())
本文介绍了在Mac操作系统下如何下载和安装Python、pandas及numpy包,并通过Python进行描述性统计操作。首先,从Python官网下载安装Python,然后在终端检查Python版本。接着,通过pip安装pandas和numpy,以及升级pip。最后,展示了读取Excel文件进行描述性统计的基础步骤。
2679

被折叠的 条评论
为什么被折叠?



