- 博客(41)
- 资源 (1)
- 收藏
- 关注
原创 Study of Stylized Facts in Stock Market Data 股市数据中的程式化事实研究
在金融统计文献中,一种在广泛的工具、市场和时间段中普遍存在的数据属性被称为风格化的经验事实。本文首先介绍了大量文献中研究的风格化事实,包括金融时间序列数据的一些单变量分布特性、多变量特性和与时间序列相关的特性。在接下来的部分中,我们对分布在不同大洲的10家证券交易所上市的几只股票的价格数据进行了分析,并进行了数据分析。程式化的经验事实是一种数据的属性,它在广泛的工具、市场和时间段中是常见的。金融时间序列数据中的几个程式化的经验事实已经被识别和研究。
2024-07-04 17:34:48 735 1
原创 浦语大模型笔记
浦语大模型全链路开源体系大模型成为发展通用人工智能的重要途径书生·浦语 2.0(InternLM2)核心理念书生·浦语 2.0(InternLM2)的主要亮点主要亮点 1:超长上下文支持主要亮点 2:性能全方位提升主要亮点 3:优秀的对话和创作体验主要亮点 4:工具调用能力升级主要亮点 5:数理能力突出从模型到应用典型流程书生·浦语全链条开源开放体系全链条开源开放体系|数据全链条开源开放体系|开放高质量语料数据全链条开源开放体系|预训练全链条开源开放体系|微调全链条开源开放体系|评
2024-05-13 20:33:16 700
原创 linux安装astra工具箱 conda install -c astra-toolbox 报错显示module ‘astra’ a circular import)
后来将官网的windowscuda版本下载后,将文件夹放到conda环境,显示报错,当时没想到时windows和linux的锅。再次运行 conda install -c astra-toolbox astra-toolbox。在python==3.8的环境下安装报错,经常显示。后来新建一个3.9的虚拟环境。
2024-05-01 00:48:29 452 1
原创 Transformers 直观解释——不仅是如何工作,而且为什么工作得这么好 (Ketan Doshi)
总结——是什么让 Transformer 运转起来?查询和密钥之间的点积计算每对单词之间的相关性。然后将该相关性用作“因子”来计算所有值词的加权和。该加权和作为注意力分数输出。Transformer 学习嵌入等,从而使彼此相关的单词更加对齐。这是引入三个线性层并为查询、键和值创建三个版本的输入序列的原因之一。这为注意力模块提供了更多参数,它可以学习这些参数来调整词向量的创建。
2024-03-16 15:20:32 855
原创 基于深度学习的人体姿态估计
人体姿态估计(HPE)是计算机视觉领域的一个重要课题,旨在从图像或视频中定位人体关键点并建立人体表示。近年来,深度学习技术的快速发展使得HPE取得了巨大进步。本文对基于深度学习的2D和3D人体姿态估计方法进行了全面综述,内容包括方法分类、性能比较、数据集和评估指标,以及应用和未来研究方向。
2024-03-14 22:09:28 1036 3
原创 gradio部署视频输入输出示例,gradio网页输出视频nan,输出视频无法播放解决方法
在moviepy的方法中,codec参数用于指定视频编码格式。对于视频编码,moviepylibx264:这是一个流行的H.264编码器,通常提供很好的压缩率和质量平衡。libx265:这是H.265编码器,它提供了比H.264更高的压缩率,但编码时间可能会更长。mpeg4:这是一个较老的编码器,它的压缩率不如H.264,但可能在某些设备上更兼容。vp8:这是一个较早的VP8编码器,通常用于WebM视频。vp9:这是VP8的更新版本,提供了更好的压缩率和质量。除了视频编码,
2024-03-14 20:45:49 5197 2
转载 医学影像数据集汇总(持续更新)150个
影像数据集(150)全身(5)头颈部(29)胸部(23)腹部(26)心脏(6)骨头(4)内窥镜(17)眼底(18)皮肤科(6)显微成像(16)影像文本数据集(8)文本数据集(12)
2024-03-12 18:42:51 4289
原创 PyTorch中的模型保存:一键保存、两种选择/保存整个模型和保存模型参数
当我们使用一键保存功能时,PyTorch会把整个模型连同它的结构和参数一起保存下来。与保存整个模型相比,有时我们只需要保存模型的参数而不是结构。这种方式会生成更小的文件,更适用于共享参数或迁移学习等场景。通过这种转换的方式,我们可以随心所欲地在保存模型整体结构和仅保存参数之间切换,让模型保存变得更加灵活便捷。有时候,我们需要在保存整个模型和保存模型参数之间自由转换。通过这种方式,我们一举保存了模型的全貌,文件通常以.pth或.pt为后缀。通过这种方式,我们轻装上阵,只携带了模型的参数而不是整个结构。
2024-03-06 16:03:48 4493
原创 清华源 -i https://pypi.tuna.tsinghua.edu.cn/simple
清华源 -i https://pypi.tuna.tsinghua.edu.cn/simple
2024-03-06 15:29:22 693
原创 Gradio快速搭建机器学习模型的wedui展示用户界面/深度学习网页模型部署
在上面的示例中,我们看到了一个相对简单的函数,但该函数可以是从音乐生成器到税收计算器再到预训练机器学习模型的预测函数的任何函数。✍️提示:在本地开发时,您可以在热重载模式下运行 Gradio 应用程序,只要您对文件进行更改,该模式就会自动重新加载 Gradio 应用程序。现在,世界各地的任何人都可以通过浏览器尝试您的 Gradio 演示,而机器学习模型和所有计算将继续在您的计算机上本地运行。这是一个广泛采用的约定,您应该遵循它,以便使用您的代码的任何人都可以轻松理解它。现在,运行您的代码。
2024-03-06 15:06:09 2024
原创 图像质量评价指标计算python代码,PSNR,SSIM,fsim,niqe,lpips,rmse,德尔塔δe
给出了图像质量评价指标计算python代码,PSNR,SSIM,fsim,niqe,lpips,rmse,德尔塔δe。
2024-03-05 22:54:24 2257 1
转载 保姆喂饭级stable_diffusion_webUI使用教程/含工具包一键安装
这篇文章是关于如何使用Stable Diffusion WebUI的教程。它详细介绍了安装过程、配置要求、以及如何下载和运行这个项目。文章还提到了一些有用的资源,比如不同的整合包和教程视频,这些对于初学者来说特别有用。此外,文章还讨论了运行Stable Diffusion所需的硬件配置,包括显存和内存的要求,以及如何为不同类型的显卡配置合适的参数
2024-01-18 16:51:27 564
原创 AIGC场景应用展望研究报告
AIGC是内容生产方式的进阶,实现内容和资产的再创造AIGC(AI-Generated Content)本质上是一种内容生产方式,即人工智能自动生产内容,是基于深度学习技术,输入数据后由人工智能通过寻找规律并适当泛化从而生成内容的一种方式。过往的内容创作生态主要经历了PGC、UGC到AIUGC的几个阶段,但始终难以平衡创作效率、创作成本及内容质量三者之间的关系,而AIGC可以实现专业创作者和个体自由地发挥创意,降低内容生产的门槛,带来大量内容供给。从决策判别到创造生成,人工智能进入双“G”时代。
2024-01-16 15:16:14 1318
原创 全球数字经济白皮书
当前,世界正以前所未有的方式展开变革,各国面临经济增长动能不足和不稳定、不确定、难预料的因素增多的挑战。在这种背景下,新一轮科技革命和产业变革为各国的高质量发展提供了重要机遇。数字经济成为推动各国经济复苏和增长的重要力量和新生动能。本文将根据《全球数字经济白皮书(2023年)-中国信通院》报告,分析全球数字经济的战略布局新动向、数字经济为全球经济复苏提供的支撑、数字经济重点领域的发展方向以及全球数字经济的发展愿景。
2024-01-15 19:55:28 1105 1
原创 大型语言模型综述/总结 LLM A Survey of Large Language Models
自20世纪50年代图灵测试提出以来,人类就开始探索机器掌握语言智能。语言本质上是一个受语法规则控制的复杂的人类表达系统。开发强大的人工智能 (AI) 算法来理解和掌握语言提出了重大挑战。作为一种主要方法,语言建模在过去二十年中被广泛研究用于语言理解和生成,从统计语言模型发展到神经语言模型。最近,通过在大规模语料库上预训练 Transformer 模型提出了预训练语言模型(PLM),在解决各种自然语言处理(NLP)任务方面表现出了强大的能力。
2024-01-14 13:26:07 3388
原创 INR隐式神经表示综述(医学影像领域)Implicit Neural Representation in Medical Imaging: A Comparative Survey
*隐式神经表示(Implicit neural representations (INRs))**作为场景重建和计算机图形学中的强大范例而受到重视,并取得了显着的成果。通过利用神经网络通过隐式连续函数对数据进行参数化,INR 具有多种优势。认识到 INR 在这些领域之外的潜力,本次调查旨在提供医学成像领域 INR 模型的全面概述。在医疗环境中,存在许多具有挑战性和不适定的问题,这使得 INR 成为一个有吸引力的解决方案。
2024-01-13 17:53:08 2891
原创 大模型微调及生态简单介绍
深度学习微调⽅法⾮常多,主流⽅法包括LoRA、Prefix Tuning、P- Tuning、Promt Tuning、AdaLoRA等;目前这些⽅法的实现均已集成⾄Hugging Face项⽬的库中,我们可以通过安装和调HuggingFace的PEFT(⾼效微调)库,来快速使⽤这些⽅法;Hugging Face 是⼀家专注于⾃然语⾔处理 (NLP)技术的公司,同时也开发并维护了多个⼴ 受欢迎的⾃然语⾔处理的开源库和⼯具,如Transformers 库、ChatGLM-6B库等;
2024-01-12 14:51:49 1300
原创 对单张图片进行卷积池化遇到的小问题
对单张图片进行卷积时遇到的小问题"max_pool2d" not implemented for 'Byte'和RuntimeError: Given input size: (400x600x3). Calculated output size: (400x150x0). Output size is too small
2022-05-29 16:46:17 1832
原创 机器学习中VC界和VC维草稿笔记
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档前言提示:这里可以添加本文要记录的大概内容:例如:随着人工智能的不断发展,机器学习这门技术也越来越重要,很多人都开启了学习机器学习,本文就介绍了机器学习的基础内容。提示:以下是本篇文章正文内容,下面案例可供参考一、pandas是什么?示例:pandas 是基于NumPy 的一种工具,该工具是为了解决数据分析任务而创建的。二、使用步骤1.引入库代码如下(示例):import numpy as npimport pan.
2022-03-23 22:45:04 871
原创 利用scikit-opt库中的GA遗传优化算法解决旅行商问题TSP(含自定义起终点)
scikit-opt库简介官网是一个封装了7种启发式算法的 Python 代码库,包含差分进化算法、遗传算法、粒子群算法、模拟退火算法、蚁群算法、鱼群算法、免疫优化算法。一:编写自定义问题主要是将自己问题的数据输入到封装的代码中,操作简单,修改码量很少其中只有两行代码需要修改num_points = 30###num_points指需要遍历的节点个数points_coordinate = np.random.rand(num_points, 2)points_coordinate是自定义问题中
2022-03-22 17:35:53 3478
原创 数据分析处理快速上手教程matplotlib+numpy+pandas(基础讲解)
python数据挖掘主要参考资料:API reference — pandas 1.4.1 documentation (pydata.org)哔哩哔哩网课走在小路上 笔记一、数据挖掘基础环境安装与使用1.1 库的安装pip install集合到requirements.txt文件中集成安装matplotlib==2.2.2numpy==1.14.2pandas==0.20.3TA-Lib==0.4.16 技术指标库tables==3.4.2 hdf5jupyter==1
2022-03-20 11:35:32 12395 11
原创 利用scikit中的遗传算法求解(整数01)约束规划实例详解教程+利用scipy.optimize求解约束规划问题
注意标准形式下面两个方法约束规划的一般标准形式为:利用scikit-opt的遗传算法求解约束规划问题先放上链接:scikit-opt网址主要四个步骤:下面依照此题多约束为例可知该题有5个不等式约束,且决策变量为01整数,后面将具体讲解如何将目标函数的约束条件加入GA模型中一:import scikit-opt库import pandas as pdimport numpy as npimport matplotlib.pyplot as pltfrom sko.GA import G
2022-03-10 16:56:58 10344 16
转载 python利用pandas库函数read_excel读取excel数据,然后获取dataframe中的行列数据,最后将处理的数据写入excel
[https://blog.csdn.net/weixin_38546295/article/details/83537558]
2022-03-09 15:48:25 1759
原创 手把手解决visdom可视化出现ConnectionRefusedError: [WinError 10061] 由于目标计算机积极拒绝,无法连接。
背景:笔者在进行pytorch学习visdom可视化时,第一次运行可视化代码出现如下错误:[WinError 10061] 由于目标计算机积极拒绝,无法连接。在查阅了相关资料后发现可能是vidom激活服务器的问题,解决办法如下。错误详细描述及详细解决过程此处是初始测试代码(引入鸢尾画数据集,对特征点集进行可视化)from visdom import Visdomfrom sklearn.datasets import load_irisiris_x,iris_y=load_iris(ret
2022-02-23 16:18:42 5815 6
原创 pycharm配置conda环境时显示找不到conda.exe文件+解决pycharm非零退出代码Non-zero exit code(pip更新无效)
解决找不到conda.exe我在安装pycharm和anaconda中遇到了太多的坑了,这里是一个小记录。无数次卸载重装anaconda后,在利用pycharm配置conda环境时,总是显示找不到conda文件,如下图1所示,我发现其中的Conda executable 处显示的时conda.exe文件,我就的利用电脑文件管理器定位到行营的文件地址,发现那个文件夹中明明有conda.exe,就很奇怪。因此我再次从Conda executable后的文件中定位,发现有conda.exe文件,只是显示文件
2022-02-22 21:22:31 36043 9
原创 获取联想锁屏壁纸(超简单两个方法)
方法一:利用系统文件夹找到地址C:\ProgramData\Lenovo\devicecenter\LockScreen\h5cache\assertassert文件夹中的bg.png就是上次打开电脑时看到的精美锁屏壁纸示例如下:需要注意要在查看里勾选隐藏的项目:如下方法二:打开联想软件商店,选择壁纸界面,其中的最新上架一般会有当天电脑更新的壁纸...
2022-02-17 10:06:51 13142
原创 pytroch学习记录三维绘图plot_surface
绘制三维图流程:import numpy as npimport matplotlib.pyplot as pltfrom mpl_toolkits.mplot3d import Axes3D#必要的库x_data = [1.0, 2.0, 3.0]y_data = [2.0, 4.0, 6.0]#这个是一个线性模型y=2x,后面计算损失函数def forward(x): return x * w + b#返回预测值def loss(x, y): y_pred =
2021-10-04 22:08:58 1101
原创 机器学习(西瓜书)学习笔记二模型评估与选择
模型评估与选择本章概览经验误差与过拟合评估方法留出法交叉验证法自助法性能度量比较检验偏差与方差本章概览图片来自b站深度之眼UP经验误差与过拟合错误率:通常把分类错误的样本数占样本总数的比例称为错误率E=a/m;其中a为错误数,m为样本总数。精度:1-E;即1减去错误率误差:把学习器(模型)的实际预测输出与样本的真实输出之间的差异称为误差。训练误差:学习器在训练集上的误差称为训练误差或经验误差泛化误差:学习器在新样本上的误差称为泛化误差过拟合:我们训练学习器的目的实际是希望他在新样本上表
2021-09-29 14:44:11 421
原创 人工智能在脑神经科学的应用创新与热点——脑机接口
人工智能在脑神经科学的应用创新与热点——脑机接口摘要【关键词】正文一: 脑机接口应用领域及前景广阔。1:多种应用领域2:意念打字二:脑机接口的畅想。1:感官与身体增强2:记忆移植3:思维解析4:梦境设计三:脑机接口可能带来的问题。1:技术层面2:伦理层面结语注摘要本文将主要介绍人工智能与脑神经科学的结合——脑机接口的应用创新领域以及脑机接口在意念打字方面的最新发展和自己的理解,最后就脑机接口未来可能带来的前言颠覆性科技创新应用命题的可能给出了自己的猜想与见解,并且分析了当脑机接口真正到来时可能会给人类带
2021-09-08 23:04:21 3088 2
原创 机器学习(西瓜书)学习笔记一
绪论术语(1)数据集:示例或样本的集合(2)示例/样本:关于一个事件或对象的描述(3)属性/特征:反应事件或对象在某方面的表现或性质的事项(4)属性值:属性的取值(5)属性/样本/输入空间:属性张成的空间(6)特征向量:属性空间中每个事件/对象对应其中一个点,该点又可表示一个坐标向量(7)从数据中学得模型的过程称为学习或训练,这个过程通过执行某个学习算法完成(8)标记:关于示例结果的信息(9)样例:拥有了标记信息的示例(10)分类:预测离散值的学习任务(11)回归:预测连续值的学习任务
2021-09-04 16:33:20 156
原创 模拟退火算法和遗传算法原理简述
文章目录目录两者概览两者的主要应用SA遗传算法简介GA模拟退火算法简介SA编码适应度函数进化方式(交叉,变异)GA~~个人感想~~目录两者概览两者的主要应用可以主要应用于优化问题和搜索问题SA遗传算法简介遗传算法(Genetic Algorithms,简称 GA)是一种基于自然选择原理和自然遗传机制的搜索(寻优)算法,它是模拟自然界中的生命进化机制,在人工系统中实现特定目标的优化。遗传算法的实质是通过群体搜索技术,根据适者生存的原则逐代进化,最终得到最优解或准最优解。它必须做以下操作:初始群体的
2021-08-19 20:22:02 4031 4
原创 行为树基础入门
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录前言一、行为树是什么?二、行为树结构1.直观结构展示2.1:常用的组合节点主要有2:选择节点可以继续分类:3:节点的状态返回:三:主要优点总结前言由于最近报的一个社团面试需要了解行为树,并写作一个读书报告。因此我也花费许多时间了解了一些相关知识,但它的内容实在太多了,只整理了一些基础的内容复,供新手了解,如有错误还请指出。一、行为树是什么?行为树(BT)与状态机(FSM),分层状态机(HFSM)三种技术在机器人以及游戏设计
2021-05-26 22:02:32 837
大模型生态及微调入门介绍
2024-01-15
A Survey of Large Language Model 中文版
2024-01-14
python数据挖掘pandas,matplot,numpy等基础教程
2022-10-30
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人