题目
根据一棵树的中序遍历与后序遍历构造二叉树。
注意:
你可以假设树中没有重复的元素。
例如,给出
中序遍历 inorder = [9,3,15,20,7]
后序遍历 postorder = [9,15,7,20,3]
返回如下的二叉树:
3
/ \
9 20
/ \
15 7
- 方法一:递归
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
private:
unordered_map<int, int> index;//哈希表存储中序遍历序列中每个节点及其对应的下标
public:
//递归建立二叉树,传入六个参数
//中序遍历序列,后序遍历序列,中序遍历序列的最左节点,中序遍历序列的最右节点,后序遍历序列的最左节点,后序遍历序列的最右节点
//每次传入的区间为左闭右闭区间
TreeNode* myBuildTree(const vector<int>& inorder, const vector<int>& postorder, int inleft, int inright, int postleft, int postright){
if(inleft>inright) return NULL;//递归出口
int postroot = postright;//后序遍历序列中根节点的位置
int inroot = index[postorder[postroot]];//根据根节点查找中序遍历序列中根节点的位置
//建立根节点
TreeNode *root = new TreeNode(postorder[postroot]);
int right_subtree_size = inright-inroot;//计算右子树的节点数目
//递归建立左右子树
root->left = myBuildTree(inorder, postorder,inleft,inroot-1,postleft,postroot-right_subtree_size-1);
root->right = myBuildTree(inorder, postorder, inroot+1,inright,postroot-right_subtree_size,postroot-1);
return root;
}
TreeNode* buildTree(vector<int>& inorder, vector<int>& postorder) {
int n = inorder.size();
for(int i=0; i<n; i++){//设置哈希表
index[inorder[i]] = i;
}
return myBuildTree(inorder,postorder, 0, n-1, 0, n-1);
}
};
- 时间复杂度O(n)
- 空间复杂度O(n)
- 思路
- 后序遍历的最后一个节点即为此时的根节点,根据该节点在中序遍历中的位置将中序遍历序列分为左子树和右子树。
- 建立根节点,再递归建立它的左右子树。