题目
给定一个数组,它的第 i 个元素是一支给定的股票在第 i 天的价格。
设计一个算法来计算你所能获取的最大利润。你最多可以完成 两笔 交易。
注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。
示例 1:
输入:prices = [3,3,5,0,0,3,1,4]
输出:6
解释:在第 4 天(股票价格 = 0)的时候买入,在第 6 天(股票价格 = 3)的时候卖出,这笔交易所能获得利润 = 3-0 = 3 。
随后,在第 7 天(股票价格 = 1)的时候买入,在第 8 天 (股票价格 = 4)的时候卖出,这笔交易所能获得利润 = 4-1 = 3 。
示例 2:
输入:prices = [1,2,3,4,5]
输出:4
解释:在第 1 天(股票价格 = 1)的时候买入,在第 5 天 (股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5-1 = 4 。
注意你不能在第 1 天和第 2 天接连购买股票,之后再将它们卖出。
因为这样属于同时参与了多笔交易,你必须在再次购买前出售掉之前的股票。
示例 3:
输入:prices = [7,6,4,3,1]
输出:0
解释:在这个情况下, 没有交易完成, 所以最大利润为 0。
示例 4:
输入:prices = [1]
输出:0
- 方法一:动态规划
class Solution {
public:
int maxProfit(vector<int>& prices) {
int n=prices.size();
vector<int> f(n,0),g(n,0);
//求f[i]
//min_price记录从左到右遍历时到i为止的最小价格
int min_price=prices[0];
for(int i=1;i<n;i++)
{
//当前最小价格就是当前价格与最小价格二者取较小者
min_price=min(min_price,prices[i]);
//当前位置结束的最大利益,如果卖出则为当前价格减去最小价格,如果不卖则是前一个位置的最大利益
f[i]=max(f[i-1],prices[i]-min_price);
}
//求g[i]
//max_price记录从右往左遍历时到i为止的最大价格
int max_price=prices[n-1];
for(int i=n-2;i>=0;i--)
{
//当前为止的最大价格是当前价格与最大价格取较大者
max_price=max(max_price,prices[i]);
//当前位置开始的最大利益,如果当前位置买入则为最大价格减去当前价格,如果不买入则为后一个位置的最大利益
g[i]=max(g[i+1],max_price-prices[i]);
}
int result=0;
//求g[i]与f[i]的最大和
for(int i=0;i<n;i++)
result=max(result,f[i]+g[i]);
return result;
}
};
- 时间复杂度O(n)
- 空间复杂度O(n)
- 思路
- 一共可进行两次买卖,且只有在第一次买卖结束后才能进行第二次买卖
- 使用两个数组,f[i]表示在区间[0,i]内的最大利润,g[i]表示在区间[i,n-1]内的最大利润
- 所求的最大利润就是f[i]与g[i]的和