123 买卖股票的最佳时机III

题目

给定一个数组,它的第 i 个元素是一支给定的股票在第 i 天的价格。

设计一个算法来计算你所能获取的最大利润。你最多可以完成 两笔 交易。

注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。

示例 1:

输入:prices = [3,3,5,0,0,3,1,4]
输出:6
解释:在第 4 天(股票价格 = 0)的时候买入,在第 6 天(股票价格 = 3)的时候卖出,这笔交易所能获得利润 = 3-0 = 3 。
随后,在第 7 天(股票价格 = 1)的时候买入,在第 8 天 (股票价格 = 4)的时候卖出,这笔交易所能获得利润 = 4-1 = 3 。
示例 2:

输入:prices = [1,2,3,4,5]
输出:4
解释:在第 1 天(股票价格 = 1)的时候买入,在第 5 天 (股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5-1 = 4 。
注意你不能在第 1 天和第 2 天接连购买股票,之后再将它们卖出。
因为这样属于同时参与了多笔交易,你必须在再次购买前出售掉之前的股票。
示例 3:

输入:prices = [7,6,4,3,1]
输出:0
解释:在这个情况下, 没有交易完成, 所以最大利润为 0。
示例 4:

输入:prices = [1]
输出:0

  • 方法一:动态规划
class Solution {
public:
    int maxProfit(vector<int>& prices) {
        int n=prices.size();
        vector<int> f(n,0),g(n,0);
        //求f[i]
		//min_price记录从左到右遍历时到i为止的最小价格
        int min_price=prices[0];
        for(int i=1;i<n;i++)
        {	
        	//当前最小价格就是当前价格与最小价格二者取较小者
            min_price=min(min_price,prices[i]);
            //当前位置结束的最大利益,如果卖出则为当前价格减去最小价格,如果不卖则是前一个位置的最大利益
            f[i]=max(f[i-1],prices[i]-min_price);
        }
        //求g[i]
        //max_price记录从右往左遍历时到i为止的最大价格
        int max_price=prices[n-1];
        for(int i=n-2;i>=0;i--)
        {
        	//当前为止的最大价格是当前价格与最大价格取较大者
            max_price=max(max_price,prices[i]);
            //当前位置开始的最大利益,如果当前位置买入则为最大价格减去当前价格,如果不买入则为后一个位置的最大利益
            g[i]=max(g[i+1],max_price-prices[i]);
        }
        int result=0;
        //求g[i]与f[i]的最大和
        for(int i=0;i<n;i++)
            result=max(result,f[i]+g[i]);
        return result;
    }
};

  • 时间复杂度O(n)
  • 空间复杂度O(n)
  • 思路
    • 一共可进行两次买卖,且只有在第一次买卖结束后才能进行第二次买卖
    • 使用两个数组,f[i]表示在区间[0,i]内的最大利润,g[i]表示在区间[i,n-1]内的最大利润
    • 所求的最大利润就是f[i]与g[i]的和
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值