对于生成{1,……,n}的所有n!个排列的问题,我们可以利用减治法,该问题的规模减一就是要生成所有(n-1)!个排列。假设这个小问题已经解决了,我们可以把n插入到n-1个元素的每一种排列中的n可能的位置中去,来得到较大规模大问题的一个解。按照这种方式生成的所有排列都是独一无二的,并且他们的总数应该是n(n-1)!=n!。这样,我们都得到了{1,……,n}的所有排列。
JohnsonTrotter算法实现形式。
JohnsonTrotter(n)
输入:一个正整数n
输出:{1,……,n}的素有排列的列表
将第一个排列初始化为方向向左的元素数组
while 存在一个移动元素k do
求最大的移动元素k
把k和它箭头指向的相邻元素互换
调转所有大于k的元素的方向
将新排列添加到列表
(摘自算法设计与分析基础)
下午自己实现了一下这个算法,将其改成可以把N个不重复的元素排列出来,程序中使用到的比较器提供接口需要自己去实现,程序运行需要把使用者自己实现的比较器注入程序。自我感觉程序灵活性还可以。
/**
* 使用JT算法进行排列组合。
* 注意:请务必保持范型和比较接口范型一致,否则可能产生不可预