拟合sin函数和实现12个手写汉字分类

请添加图片描述

193020xxxxx 觉觉

代码基本架构

在本次part1反向传播的lab中,我用的是python的面向对象来实现。基本思路是用了三个类来模拟神经网络。分别是用于代表单个神经元的Neuron类,代表每层神经元的Layer类以及代表整个神经网络结构的Network类。基本实现架构如下

Neuron类

神经元类中的参数包括,每个神经元的权重weight(是一个1 * n的二维矩阵,n取决于该神经元所在层的左层有多少个神经元),神经元权重的个数weigh_size;神经元的偏移量bias(初始值为-1到0之间的一个随机数);每个神经元对应的输入input输出output,以及delta(反向传播时需要迭代计算的量)

该类中还包括其他一些方法,比如说激活函数sigmoid(),以及激活函数的导函数derivatives(),还有每个神经元使用激活函数正向传播的函数forward()。

这里我最后使用的激活函数并不是sigmoid,为了提高准确率选择了其他的激活函数,后面在分析网络参数的的实验比较的内容中会提到

# 定义神经元类
class Neuron:

    def __init__(self, weight_size):
        self.weight_size = weight_size
        self.params = {'weight': np.random.random((1, weight_size)),  # 神经元的权重
                       'bias': -random.random(),  # 神经元的偏移量
                       'input': 0,  # 神经元记录的输入
                       'output': 0,  # 神经元记录的输出
                       'delta': 0
                       }

    def sigmoid(self, x_):
        return math.tanh(x_)
        # return 1.0 / (1.0 + np.exp(-x_))

    # 正向传播
    def forward(self):
        input = self.params['input']
        self.params['output'] = self.sigmoid(input)

    def derivatives(self):
        output = self.params['output']
        # return output * (1 - output)
        return 1 - output ** 2

Layer类

Layer类用于组织同层的神经元,其中的参数包括层中神经元的个数neuron_number,该层所对应的左层layer_left(通过这种方式让层与层之间联系起来),每层中所有的神经元列表neurons

其中主要的方法包括,构造方法(根据传入的神经元个数和左层,循环地构建起该层的神经元),以及用于正向传播的函数forward(),和反向传播时调整相应参数的函数backward()

当进行正向传播forward时,该层所有的神经元的权重与左层的输出相点乘,得到了本层神经元的输入,再调用神经元自身的激活函数得到该层神经元的输出;当反向传播backward时,使用右边一层所有节点的delta和由于sigmoid带来的导数项(输出层除外),配合上本层的节点输出来设置权重的变化量。

# Layer类组织同层的神经元
class Layer:

    def __init__(self, neuron_number, layer_left):
        self.neuron_number = neuron_number  # 每层有的神经元个数
        self.layer_left = layer_left  # 该层的左层,可以为空
        self.neurons = []  # 每层的神经元列表
        # 这个for循环用于构建起每层的神经元
        for i in range(0, neuron_number):
            # 如果该层不是最左层,那么该层每个神经元的weight_size应该等于它左层的神经元个数
            if self.layer_left is not None:
                n = Neuron(self.layer_left.neuron_number)
            # 如果该层是最左层,该层的神经元是没有权重的
            else:
                n = Neuron(0)
            self.neurons.append(n)
        # 同时设置此层的左层的右层为此层
        if self.layer_left is not None:
            self.layer_left.layer_right = self

    def forward(self):
        left = self.layer_left
        for neuron in self.neurons:
            temp = 0
            weight = neuron.params['weight']
            bias = neuron.params['bias']
            for i in range(0, left.neuron_number):
                temp += left.neurons[i].params['output'] * weight[0][i]
            temp += bias

            neuron.params['input'] = temp
            neuron.forward()

    def backward(self):
        for i in range(0, self.neuron_number):
            temp = 0
            for j in range(0, self.layer_right.neuron_number):
                neuron = self.layer_right.neurons[j]
                delta = neuron.params['delta']
                weight = neuron.params['weight']
                temp += delta * neuron.derivatives() * weight[0][i]
            self.neurons[i].params['delta'] = temp

        for i in range(0, self.neuron_number):
            neuron = self.neurons[i]
            left = self.layer_left
            delta = neuron.params['delta']
            for j in range(0, neuron.weight_size):
                output = left.neurons[j].params['output']
                self.neurons[i].params['weight'][0][j] += output * neuron.derivatives() * delta * Network.w_learning_rate
            self.neurons[i].params['bias'] += self.neurons[i].derivatives() * delta * Network.b_learning_rate


Network类

Network类中有两个很重要的参数,w_learning_rateb_learning_rate分别对应着delta w 和 delta b的学习率,这里设置两个学习率主要是为了方便调参,使训练出的模型更加准确。

构造方法用于一层一层地构造神经网络,**forward()backward()**还是对应着正向传播和反向传播,一层一层地将输入层的向输出层forward(),从输出层向输入层backward()。train_x方法用于进行模型的训练,传入的两个参数:inputs为输入,outputs为理想的输出。test_x用于测试模型的训练结果,并且返回训练的结果。

class Network:
    w_learning_rate = 0.005
    b_learning_rate = 0.005

    def __init__(self, nums):
        self.nums = nums    # nums是一个int的list nums的length代表着层数 nums的数值代表着每层所有的神经元个数
        self.layers = []    # 网络所拥有的所有层
        # 首先,构造第一层(因为第一层没有左边层)
        layer_1 = Layer(nums[0], None)
        self.layers.append(layer_1)
        for i in range(1, len(nums)):
            layer = Layer(nums[i], self.layers[i - 1])
            self.layers.append(layer)
        # 设置好每一层的右边层
        for i in range(0, len(nums) - 1):
            self.layers[i].layer_right = self.layers[i + 1]

    def forward(self, inputs):
        for i in range(0, len(inputs)):
            self.layers[0].neurons[i].params['output'] = inputs[i]
        for i in range(1, len(self.layers)):
            self.layers[i].forward()

    def backward(self, outputs):
        length = len(self.layers)
        last_layer = self.layers[length - 1]    # 最后一层
        neuron_length = len(last_layer.neurons)
        for i in range(0, neuron_length):
            neuron = last_layer.neurons[i]
            last_layer.neurons[i].params['delta'] = outputs[i] - neuron.params['output']
            for j in range(0, neuron.weight_size):
                neuron.params['weight'][0][j] += last_layer.layer_left.neurons[j].params['output'] * neuron.params['delta'] * Network.w_learning_rate
            neuron.params['bias'] += neuron.params['delta'] * Network.b_learning_rate
        for i in range(length - 2, 0, -1):
            self.layers[i].backward()

    def softmax(self):
        last_layer = self.layers[len(self.layers) - 1]
        total = 0
        for neuron in last_layer.neurons:
            input = neuron.params['input']
            total += np.exp(input)
        for neuron in last_layer.neurons:
            input = neuron.params['input']
            neuron.params['output'] = np.exp(input) / total

    def train_sin(self, inputs, outputs):
        self.forward(inputs)
        # 最后一层的forward不一样
        last_layer = self.layers[len(self.layers) - 1]
        for neuron in last_layer.neurons:
            neuron.params['output'] = neuron.params['input']
        self.backward(outputs)

    def test_sin(self, inputs, outputs):
        length = len(outputs)
        self.forward(inputs)
        last_layer = self.layers[len(self.layers) - 1]
        for neuron in last_layer.neurons:
            neuron.params['output'] = neuron.params['input']

        print("x的值为", inputs[0], "期望结果为", outputs[0], "训练得出的结果为", self.layers[len(self.layers) - 1].neurons[0].params['output'])

        # 返回最终拟合出的结果
        return self.layers[len(self.layers) - 1].neurons[0].params['output']

用于拟合sin的函数

随机取450个点对网络进行训练,可以自定义训练的次数。训练完成后,再随机取400个点进行测试,并将拟合的结果与应该得到的结果相比较,得出误差值的大小,并用plt库画图直白地展示出来

if __name__ == '__main__':
    sample_size = 450
    input = [[0 for i in range(1)] for i in range(sample_size)]
    output = [[0 for i in range(1)] for i in range(sample_size)]
    for i in range(0, sample_size):
        rand = random.random()
        temp = np.pi * 2 * rand - np.pi
        input[i][0] = temp
        output[i][0] = np.sin(input[i][0])

    plt.xlabel("X-axis")
    plt.ylabel("Y-axis")
    plt.title("sin match")
    in_put = []
    out_put = []
    for i in range(0, sample_size):
        in_put.append(input[i][0])
        out_put.append(output[i][0])
    plt.scatter(in_put, out_put, label='sin')
    

    test_size = 400
    test_input = [[0 for i in range(1)] for i in range(test_size)]
    test_output = [[0 for i in range(1)] for i in range(test_size)]
    in_put_1 = []
    list_1 = []  # 用于记录排序过的随机测试数组,这样方便画图
    for i in range(0, test_size):
        rand = random.random()
        temp = np.pi * 2 * rand - np.pi
        list_1.append(temp)
    list_1.sort()
    for i in range(0, test_size):
        test_input[i][0] = list_1[i]
        test_output[i][0] = np.sin(test_input[i][0])

    for i in range(0, test_size):
        in_put_1.append(test_input[i][0])

    network = Network([1, 40, 1])  # 构建一个三层神经网络,中间层有50个神经元
    for i in range(0, 1000):
        for j in range(0, sample_size):
            network.train_sin(input[j], output[j])
        print("训练了第", i, "次")

    total_error = 0
    error = 0
    result = []
    for i in range(0, test_size):
        result.append(network.test_sin(test_input[i], test_output[i]))
        total_error += np.power(result[i] - test_output[i], 2)
        error += abs(result[i] - test_output[i])
    print("loss1:", total_error / test_size)
    print("loss2:", error / test_size)
    plt.text(0.5, -0.5, 'Loss='+str(error / test_size), fontdict={'size': 12, 'color': 'red'})
    plt.plot(in_put_1, result, 'r-', lw=2, label='my_result')
    plt.legend(loc='upper left')
    plt.show()

用于实现汉字分类的函数

if __name__ == '__main__':
    sample_size = 450   # 取450个字用于训练
    test_size = 620 - sample_size   # 剩下的字用于测试训练结果
    input = np.random.random((sample_size, 12, 28 * 28))
    output = np.zeros((12, 12))  # output是一个[12][12]的二维数组
    # 将所有训练图片的数据传入input数组中
    for i in range(0, sample_size):
        for j in range(0, 12):
            input[i][j] = load_image("train/" + str(j + 1) + "/" + str(i + 1) + ".bmp")

    test_input = [[[0 for i in range(28 * 28)] for j in range(12)] for k in range(test_size)]
    for i in range(0, test_size):
        for j in range(0, 12):
            test_input[i][j] = load_image("train/" + str(j + 1) + "/" + str(i + 1 + sample_size) + ".bmp")

    for i in range(0, 12):
        output[i][i] = 1

    network = Network([28 * 28, 64, 12])
    """
    file = shelve.open("./saveNetwork/1.dat")
    data = file["key"]
    network = data['n']
    file.close()
     """
    total_ep = 50    # 总共epoch的次数
    last_rate = -1
    rate = 0    # 准确率
    ep = 10
    rightness = 0
    ra = 0
    for i in range(0, total_ep):
        for j in range(0, sample_size):
            for k in range(0, 12):
                if network.train_classfi(input[j][k], output[k]):
                    rightness += 1
            # print("训练图片种类+1")
        ra = rightness / (sample_size * 12.0)
        print("迭代了", i+1, "次", "准确率为", ra)
        rightness = 0
        if ra > 0.85:
            break
    right = 0   # 准确的个数
    for j in range(0, test_size):
        for k in range(0, 12):
            # 如果测试得出的结果为True的话,即为正确,right数量+1
            if network.test_classfi(test_input[j][k], output[k]):
                right += 1
    rate = right / (test_size * 12.0)
    print("跑了epoch:", total_ep, "准确率:", rate)
    for i in range(0, 12):
        print(network.predict_classfi(test_input[50][i]))

    file = shelve.open("./saveNetwork/0.005-64-50.dat")
    data = {'n': network}
    data_key = "key"
    file[data_key] = data
    file.close()


实验结果

sin函数拟合

在这里插入图片描述

实验对比和优化分析

不同网络架构、网络参数的实验比较

在bp网中,提高隐层的层数可以提高网络的复杂度,提高拟合能力,从而可以达到提高精度的目的。但这样也可能出现过拟合的现象,并且使调整网络层数和节点数以及其他参数变得更加困难,也增加了网络的训练时间,而且输入值过大,看你引起反向传播的时候梯度消失的情况,导致网络学习不出来,训练结果反而不如网络结构比较简单的网络。

在本次进行sin函数拟合和进行十二个手写汉字分类的任务中,任务都不算是很复杂,所以我在此主要比较和调试的是三层网络结构和四层网络结构,以及其中每层神经元的个数

Sin
网络结构的影响

首先对于拟合sin函数的任务,我一开始使用的是三层网络结构。下图分别是使用[1,40,1],[1,50,1],[1,60,1]网络结构得到的拟合效果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

可以见得,改变中间的隐层神经元个数,无论学习多少次,拟合效果都不是很好,有往中间收缩的趋势。于是我联想到会不会是因为隐层次数太少的原因,于是将网络结构改为四层并开始尝试,发现效果更不好了,并且训练时间明显增加了。

如下是网络结构为[1,20,30,1],对四百个点学习3000次时得到的拟合函数图像

在这里插入图片描述

激活函数的影响

左边的这条偏直的线又让我联想到,会不会是sigmoid函数的问题,之前用到的sigmoid函数以及它的导函数是:

    def sigmoid(self, x_):
        return 1.0 / (1.0 + np.exp(-x_))

 
    def derivatives(self):
        output = self.params['output']
        return output * (1 - output)

换成了它的稍微变形tanh函数

    def tanh(self, x_):
        return math.tanh(x_)

    def derivatives(self):
        output = self.params['output']
        return 1 - output ** 2

结果得到的实验结果有了很大的改观!

在这里插入图片描述

思考了一下,sigmoid的输出在0到1之间,在压缩数据幅度方面有优势,但是会存在梯度消失的问题,在反向传播上有劣势,在优化过程中存在着不足;而tanh函数是
f ( x ) = e x − e − x e x + e − x f(x)= \frac{e^x-e^{-x}}{e^x+e^{-x}} f(x)=ex+exexex
其求导:
d f ( x ) d x = 1 − f ( x ) 2 \frac{df(x)}{dx} = 1 - f(x)^2 dxdf(x)=1f(x)2
tanh以原点成中心对称,选择合适的初始值,可以使得输出的平均值为0,更加有利于提高训练效率,而sigmoid的输出总是正数,在训练过程中参数的梯度值为同一符号,更新的时候容易出现zigzag即震荡的现象,不容易达到最优值

在实现汉字分类时,一开始的准确率不高,所以我换用了另一个激活函数LeRu,它的函数及其求导为:

f ( x ) = 0 ( x < = 0 ) , f ( x ) = x ( x > 0 ) f(x) = 0 (x<=0),f(x) = x(x > 0) f(x)=0(x<=0),f(x)=x(x>0)

d f ( x ) d x = 0 ( x < = 0 ) , d f ( x ) d x = 1 ( x > 0 ) \frac{df(x)}{dx} = 0(x <= 0),\frac{df(x)}{dx} = 1(x > 0) dxdf(x)=0(x<=0),dxdf(x)=1(x>0)

但是程序在运行的过程中抛出了数据溢出的异常,这是因为ReLU不会对数据做幅度压缩,模型的层数越深,数据幅度就会不断扩张,且扩展会越来越厉害,这样就会影响到模型的表现。但是ReLU函数在反向传导中可以将梯度很好的传递给后面,能加快学习速率。

所以在汉字分类中,我最终选择的还是tanh函数

学习率的影响

学习率的取值是十分重要的,如果学习率设置得过小,会使得模型优化速度变化得很慢;而学习率设置过大又会导致模型容易过拟合。一个合理的学习率既可以保证学习速度,也可以保证学习效果

拟合sin误差中,经检验,最好的学习率为w_learning_rate = 0.005 b_learning_rate = 0.005

w_learning_rateb_learning_rateloss
0.010.0010.202672
0.010.0050.06641435
0.0050.0050.03732985
0.0080.0050.11218242
0.0030.0050.03517281
训练次数的影响

在拟合sin函数时,由于这个任务比较简单,每次训练会随机取450个点,训练次数在800以上之后就基本上已经很正确了(loss很小),再增加训练次数效果不是很明显

汉字分类
学习率的影响

而在汉字分类中,learning rate取得较大会很难训练出来,如下图所示
在这里插入图片描述

这里中间隐层选了64个节点,w_learning_rate和b_learning_rate均为0.01

最终选择w_learning_rate和b_learning_rate均为0.005

网络结构的影响

由于这个任务比较复杂,迭代次数太多,使用两层隐层的话训练时间会很长,所以这里我用的都是一层隐层,通过改变中间隐层的神经元个数形成不同的网络结构,这里我取了64,128,256这三种,但由于参数初始值没有设置得很好,加上很多地方用了for循环的嵌套,并且都是通过一个个实例化的对象的属性进行乘法操作的,没办法改成矩阵相乘,就导致迭代一次的时间特别长,所以最后选取的是64个神经元

训练次数的影响

而且进行汉字分类的时候,每次epoch及其准确率的变化如下图所示

对反向传播算法的理解

在这里插入图片描述

上图是一个很典型的三层神经网络的基本构成。Layer L1是输入层,Layer L2是隐层,Layer L3是输出层

现在我们用一个具体的三层神经网络实现一下反向传播算法:

在这里插入图片描述

输出数据i1 = 0.05,i2 = 0.10,期望输出为0.01和0.99

初始权重w1 = 0.15,w2 = 0.20,w3 = 0.25,w4 = 0.30,w5 = 0.40,w6 = 0.45,w7 = 0.50,w8 = 0.55

第一步 前向传播forward
1.输入层——>隐层

神经元h1得到的输入为
n e t h 1 = w 1 ∗ i 1 + w 2 ∗ i 2 + b 1 ∗ 1 net_{h1} = w_1*i_1 + w_2 * i_2 + b_1 * 1 neth1=w1i1+w2i2+b11

n e t h 1 = 0.15 ∗ 0.05 + 0.2 ∗ 0.1 + 0.35 ∗ 1 = 0.3775 net_{h1} = 0.15 * 0.05 + 0.2 * 0.1 + 0.35* 1 = 0.3775 neth1=0.150.05+0.20.1+0.351=0.3775

神经元h1通过激活函数得到它的输出:(这里举例用的是sigmoid函数)
o u t h 1 = 1 1 + e n e t h 1 = 1 1 + e − 0.3775 = 0.593269992 out_{h1} = \frac{1}{1 + e^{net_{h1}}} = \frac{1}{1 + e^{-0.3775}} = 0.593269992 outh1=1+eneth11=1+e0.37751=0.593269992
同理,可计算出神经元h2的输出o2:
o u t h 2 = 0.596884378 out_{h2} = 0.596884378 outh2=0.596884378

2.隐层——>输出层

神经元o1得到的输入为:
n e t o 1 = w 5 ∗ o u t h 1 + w 6 ∗ o u t h 2 + b 2 ∗ 1 = 0.4 ∗ 0.593269992 + 0.45 ∗ 0.5968843 + 0.6 ∗ 1 = 1.105905967 net_{o1} = w_5 * out_{h1} + w6 * out_{h2} + b_2 * 1 =0.4 * 0.593269992 + 0.45 * 0.5968843 + 0.6 * 1 = 1.105905967 neto1=w5outh1+w6outh2+b21=0.40.593269992+0.450.5968843+0.61=1.105905967
神经元o1的输出为:
o u t o 1 = 1 1 + e − n e t o 1 = 1 1 + e − 1.105905967 = 0.75136507 out_{o1} = \frac{1}{1 + e^{-net_{o1}} } = \frac{1}{1 + e^{-1.105905967}} = 0.75136507 outo1=1+eneto11=1+e1.1059059671=0.75136507
同理可得神经元o2的输出为
o u t o 2 = 0.772928465 out_{o2} = 0.772928465 outo2=0.772928465
到此第一步forward就完成了,得到的结果为[0.75136079,0.772928465],与我们期望的值[0.01,0.99]还有差距,所以接下来我们进行反向传播,更新各个神经元的权重,重新计算输出

第二步 反向传播backward
1.计算总误差

E t o t a l = ∑ 1 2 ( t a r g e t − o u t p u t ) 2 E_{total} = \sum{\frac{1}{2}(target - output)^2} Etotal=21(targetoutput)2

E o 1 = 1 2 ( t a r g e t o 1 − o u t o 1 ) 2 = 1 2 ( 0.01 − 0.75136507 ) 2 = 0.274811083 E_{o1} =\frac{1}{2}(target_{o1} - out_{o1})^2 = \frac{1}{2}(0.01-0.75136507)^2 = 0.274811083 Eo1=21(targeto1outo1)2=21(0.010.75136507)2=0.274811083

E t o t a l = E o 1 + E o 2 = 0.274811083 + 0.023560026 = 0.298371109 E_{total} = E_{o1} + E_{o2} = 0.274811083 + 0.023560026 = 0.298371109 Etotal=Eo1+Eo2=0.274811083+0.023560026=0.298371109

2.隐层——>输出层的权重更新

以权重w5为例,如果我们想知道w5对整体误差产生了多少影响,就可以用整体误差对w5求偏导得出:(链式法则)
α E t o t a l α w 5 = α E t o t a l α o u t o 1 ∗ α o u t o 1 α n e t o 1 ∗ α n e t o 1 α w 5 \frac{{\alpha}E_{total}}{{\alpha}{w_5}} = \frac{{\alpha}E_{total}}{{\alpha}{out_{o1}}} * \frac{{\alpha}{out_{o1}}}{{\alpha}{net_{o1}}} * \frac{{\alpha}{net_{o1}}}{{\alpha}{w_5}} αw5αEtotal=αouto1αEtotalαneto1αouto1αw5αneto1
下图给出了更清晰的反向传播:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-PDRngtOC-1634527532586)(photo/10.png)]

由于
E t o t a l = 1 2 ( t a r g e t o 1 − o u t o 1 ) 2 + 1 2 ( t a r g e t o 2 − o u t o 2 ) 2 E_{total} = \frac{1}{2}(target_{o1} - out_{o1})^2 + \frac{1}{2}(target_{o2} - out_{o2})^2 Etotal=21(targeto1outo1)2+21(targeto2outo2)2

α E t o t a l α o u t o 1 = 2 ∗ 1 2 ( t a r g e t o 1 − o u t o 1 ) 2 − 1 ∗ ( − 1 ) + 0 = − ( t a r g e t o 1 − o u t o 1 ) \frac{{\alpha}E_{total}}{{\alpha}{out_{o1}}} = 2 * \frac{1}{2}(target_{o1} - out_{o1})^{2-1} * (-1) + 0 = -(target_{o1} - out_{o1}) αouto1αEtotal=221(targeto1outo1)21(1)+0=(targeto1outo1)

由于
o u t o 1 = 1 1 + e − n e t o 1 out_{o1} = \frac{1}{1 + e^{-net_{o1}}} outo1=1+eneto11
所以有
α o u t o 1 α n e t o 1 = o u t o 1 ( 1 − o u t o 1 ) = 0.75136507 ( 1 − 0.75136507 ) = 0.186815602 \frac{{\alpha}{out_{o1}}}{{\alpha}{net_{o1}}} = {out_{o1}}(1-{out_{o1}}) = 0.75136507(1-0.75136507) = 0.186815602 αneto1αouto1=outo1(1outo1)=0.75136507(10.75136507)=0.186815602
由于
n e t o 1 = w 5 ∗ o u t h 1 + w 6 ∗ o u t h 2 + b 2 ∗ 1 net_{o1} = w_5 * out_{h1} + w6 * out_{h2} + b_2 * 1 neto1=w5outh1+w6outh2+b21
所以有
α n e t o 1 α w 5 = 1 ∗ o u t h 1 = 0.593269992 \frac{{\alpha}{net_{o1}}}{{\alpha}{w_5}} = 1 * out_{h1} = 0.593269992 αw5αneto1=1outh1=0.593269992
最后三者相乘可计算出整体误差对w5偏导值,记为:
δ o 1 {\delta}_{o1} δo1
最后来更新w5的值
w 5 + = w 5 − l e a r n i n g r a t e ∗ α E t o t a l α w 5 = 0.4 − 0.5 ∗ 0.082167041 = 0.35891648 w_5^+ = w_5 - learning rate * \frac{{\alpha}E_{total}}{{\alpha}{w_5}} = 0.4 - 0.5 * 0.082167041 = 0.35891648 w5+=w5learningrateαw5αEtotal=0.40.50.082167041=0.35891648
同理更新w6,w7,w8

3.隐层——>的权重更新

在这里插入图片描述

这样误差反向传播法就完成了,最后我们再把更新的权值重新计算,不停地迭代,就可以得到比较准确的模型

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值