- 博客(4)
- 资源 (3)
- 收藏
- 关注
原创 信号处理 面试核心知识点(三)
摘要:加窗处理在信号频谱分析中会通过卷积效应展宽主瓣、抑制旁瓣,影响频率分辨率和谱泄漏。常用窗函数包括矩形窗、汉宁窗、汉明窗、布莱克曼窗和凯泽窗,各有不同的主瓣宽度和旁瓣抑制性能。线性相位对保持波形完整性至关重要,尤其在雷达信号处理中。卷积与相关的核心区别在于卷积需翻转核函数,分别适用于系统响应建模和信号匹配。维纳滤波适用于频域稳态批处理,而卡尔曼滤波则是时域递归估计器,适合非平稳过程跟踪。
2025-09-01 21:24:26
1263
原创 数字信号处理算法 面试核心知识点(二)
摘要:DFT是离散傅里叶变换的数学定义,而FFT是实现DFT的高效算法。傅里叶变换(FT)要求信号能量有限,拉普拉斯变换(LT)通过引入实部参数可处理更广泛信号,是FT的推广。数字滤波器分为IIR(反馈结构)和FIR(无反馈)两类,各具特点。DFT谱分析存在栅栏效应、混叠和截断误差,可通过增加采样点、满足采样定理等措施改善。IIR滤波器设计有脉冲响应不变法等方法,FIR滤波器设计则包括窗函数法等。信号截断会导致频谱泄漏,表现为原频谱与窗函数频谱的卷积。
2025-08-27 19:50:37
688
原创 从连续到离散:DTFT与DFT的核心原理与区别
摘要:本文对比了离散时间傅里叶变换(DTFT)和离散傅里叶变换(DFT)的区别与应用。DTFT用于理论分析,处理无限长离散信号的连续频谱;DFT则用于工程实践,处理有限长离散信号的离散频谱计算。核心区别在于输入信号类型、频域表示和计算可行性。DTFT是理论基石,DFT通过FFT算法实现高效计算。两者互补:DTFT适用于理论推导和频谱分析,DFT则广泛应用于实际信号处理、频谱估计等数值计算场景。理解二者的区别有助于在理论研究和工程应用中正确选择变换方法。
2025-08-22 22:11:10
1416
原创 信号处理 面试核心知识点
本文介绍了信号处理的基础理论: 傅里叶变换是将时域信号转换为频域信号的数学工具,用于分析信号的频率成分; LTI(线性时不变系统)具有线性和时不变特性,其输出可通过输入信号与冲激响应的卷积得到; 卷积在信号处理中广泛应用于系统响应计算、滤波和图像处理; 信号分为连续时间信号(时间连续)、离散时间信号(时间离散)、模拟信号(时间幅度均连续)和数字信号(时间离散幅度量化)。不同信号类型在信号处理中具有不同的特点和应用场景。
2025-08-22 16:59:32
335
西电A测-电子密码锁仿真系统
2023-11-10
具有自动乐曲演奏功能的电子琴.rar
2021-08-22
具有自动演奏功能的电子琴实验EDA
2021-08-22
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人