自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(12)
  • 收藏
  • 关注

原创 YOLO26实现安卓ncnn实战部署:支持检测、分割、姿态估计、旋转框检测

在伦敦YOLO Vision 2025大会上,Ultralytics创始人Glenn Jocher演示YOLO26在树莓派上实时检测的效果,我才彻底被打脸。那个只有512MB内存的小设备,竟能以28FPS的速度准确识别出视频中快速移动的小鸟,而功耗仅仅0.8W!今年1月14日,Ultralytics正式发布了YOLO26,基于官方发布的测试数据与实际验证,YOLO26在边缘计算场景的表现确实实现了显著突破。

2026-02-09 18:21:18 2539

原创 YOLOv13全面解析与安卓平台NCNN部署实战:超图视觉重塑实时目标检测的精度与效率边界

YOLOv13于2025年6月重磅发布,提出了一种基于超图增强自适应视觉感知的全新架构,这彻底跳脱了YOLOv12所依赖的注意力机制和YOLOv11及更早版本的卷积范式。该模型通过引入超图理论来建模复杂的全局高阶语义关联,在显著提升目标检测准确性的同时,巧妙地控制了计算开销,维持了出色的实时推理性能。

2026-02-04 08:51:57 2958

原创 YOLO12全面解析与安卓平台NCNN部署实战:高效注意力机制的落地实践

YOLOv12在NCNN框架中的高效移植得益于其以注意力为中心的精简架构。通过PNNX工具可将模型转换为NCNN格式,其中区域注意力(A2)机制经优化后能在移动端保持较低计算负载,而残差高效聚合网络(R-ELAN)的轻量化设计进一步减少了内存占用。结合NCNN的推理优化,YOLOv12在Android等边缘设备上实现了实时目标检测与分割,体现了从科研创新到工程落地的完整部署路径。

2026-01-26 22:19:40 3019

原创 YOLO26全面解析:架构革新、性能飞跃、实战部署指南

YOLO26模型在边缘AI计算领域实现重大突破,通过架构革新显著提升部署效率和稳定性。该模型移除DFL模块简化边界预测,采用无NMS端到端推理架构降低延迟,引入ProgLoss+STAL组合提升小目标检测能力。测试数据显示,相比前代YOLO11,YOLO26在CPU推理速度提升最高43%,同时保持精度稳定。模型支持目标检测、实例分割等多项视觉任务,并优化了边缘设备部署体验。环境配置延续YOLO11的简易流程,支持自定义数据集训练。这一突破性进展为物联网、机器人等边缘计算场景提供了更高效的AI解决方案。

2026-01-19 15:55:05 3538

原创 基于YOLO11实现明厨亮灶系统实时检测【多场景数据+模型训练、推理、导出】

本文提出基于YOLOv11算法的厨房鼠患智能检测系统,针对传统人工巡检效率低等问题,构建包含35,953张图像、14类目标的大规模数据集。通过环境搭建、模型训练(300轮次)及评估,系统在测试中展现出良好性能,准确检测老鼠、蟑螂及厨师着装违规等目标。最终提供模型部署方案,包括ONNX格式导出与量化,实现高效食品安全监管。实验结果表明,该系统能有效提升后厨环境监测的实时性与准确性。

2026-01-12 22:52:13 2778 2

原创 【Web商城系统开发Spring Boot + Vue】之关键代码解读

本文介绍了一个基于前后端分离架构的Web商城系统开发案例。系统前端采用Vue 3 + Element Plus,后端使用Spring Boot 3 + MyBatis,技术栈包括Java 21、MySQL 8.0和Vite构建工具。文章详细解析了系统三层架构(前端层、后端层、数据库层)的交互流程,通过"用户下单→后台处理→返回结果"的完整链路示例,展示了从用户操作到数据库更新的全流程实现。此外还提供了前端Vue 3的关键代码结构说明,帮助开发者掌握电商系统的核心技术实现。

2026-01-05 22:16:39 2486

原创 【Web商城系统开发Spring Boot + Vue】之环境搭建

本文介绍了一个基于Vue 3+Spring Boot的Web商城系统开发项目,详细讲解了开发环境的配置流程。项目采用前后端分离架构,前端使用Vue 3+Element Plus+Vite,后端采用Spring Boot 3+MyBatis+Java 21,数据库为MySQL 8.0。文章重点说明了JDK 21、MySQL 8.0和Node.js的环境安装与配置步骤,包括下载安装、环境变量设置及验证方法。通过清晰的图文指引,帮助开发者快速搭建完整的开发环境,为后续项目开发奠定基础。

2025-12-29 23:03:41 2472

原创 【基于NCNN搭建从0到1完整版】关键代码解读

本文介绍了基于NCNN框架的Android视觉推理应用架构设计。系统采用JNI桥接技术,分为应用层(Java)和本地层(C++)。欢迎界面提供模型选择(检测/分割/姿态估计)、输入尺寸设置等功能选项;本地检测界面实现实时推理,通过JniBridge模块完成数据交换,底层调用NCNN+OpenCV进行算法处理,最终将结构化数据返回到UI层渲染。文章详细分析了两个核心界面的XML布局设计,包括背景层、功能切换区和参数配置区的组件实现。整个架构实现了从模型选择到推理执行的完整流程。

2025-12-23 21:44:56 2316

原创 【ultralytics最新版本】Android部署算法(含yolo11)万字完结篇

本文记录了YOLOv8模型转换NCNN的详细流程。首先搭建Python 3.8环境,安装指定版本的Ultralytics、ONNX等相关依赖。针对YOLOv8检测和分割任务,需修改C2F和Detect层的算子实现以适配NCNN。通过pt2onnx.py脚本将模型转为ONNX格式,再使用onnx2ncnn工具生成param和bin文件。最后将量化模型集成到Android工程中,完成移动端部署。整个过程需注意量化环境与训练环境的隔离,并确保模型输入输出与NCNN工具导出格式一致。文中还提供了环境配置、代码修改和

2025-12-18 22:39:19 1393

原创 【跨平台交叉编译】Android 编译x264+FFmpeg 万字完结篇

本文介绍了在Android端使用FFmpeg进行视频解码的优化方案。针对MediaPlayer API解码效率低(约1帧/秒)的问题,作者选用FFmpeg从JNI层直接处理视频流。环境配置包括:Linux 22.04系统、NDK r26、x264 0.165和FFmpeg 5.1.6,重点讲解了x264的交叉编译流程,提供了编译脚本和注意事项。编译过程需注意版本兼容性、系统环境等问题,最终生成适配不同CPU架构(armeabi-v7a/arm64-v8a等)的动态库。附编译好的库文件下载链接及详细配置说明。

2025-12-15 23:27:03 2008

原创 【基于NCNN搭建从0到1完整版】自定义算法搭建Android APP工程 万字完结篇

本文介绍了基于NCNN框架在Android平台实现目标检测的完整流程。项目在ncnn-android-yolov8基础上进行了功能封装,支持检测、分割、跟踪等多种算法,适用于图片、视频、摄像头及RTSP流输入。详细讲解了环境搭建、三方库编译(NCNN、OpenCV、FFmpeg)、YOLOv8模型转换(pt→onnx→ncnn)等关键步骤,并提供了编译好的库文件和完整工程代码。项目采用Android Studio开发,兼容最新版本工具链(NDK 26.3、Gradle 7.2.0等),适合移动端AI应用开发

2025-12-13 11:42:49 1791 2

原创 【Android Studio】安装教程、界面+SDK设置

本文详细介绍了Android Studio的安装、使用和卸载全流程。主要内容包括:从官网下载安装包,分步骤完成安装并注意事项;界面功能模块解析(Project面板、Gradle面板等);常用设置调整(主题、字体、行号等);SDK配置方法;开发常用快捷键分类说明;以及完整的卸载步骤(包含SDK清理)。通过图文结合的方式,为开发者提供全面的Android Studio使用指南,涵盖从环境搭建到日常开发的核心操作要点。

2025-12-11 20:52:56 1675 2

基于NCNN+Android上部署YOLO26目标检测算法(安卓APP)

本资源将YOLO26集成ncnn-android(GitHub开源项目)中,目前YOLOv13算法支持检测、分割、姿态估计、旋转框等,功能支持本机前后双摄像头调取,Release发版,可直接安装到手机,仅支持安卓。

2026-02-09

YOLOv26+v8.4.0版本+obb旋转框COCO模型+预训练权重文件

从GitHub下载YOLOv26模型权重文件时,由于网络原因,常常遇到下载速度缓慢甚至中途断开,导致需要反复重试的问题。为方便大家快速获取和使用,我已将下载好的文件进行整理打包,并在此分享,以提高下载效率。 压缩包内文件列表包括:yolo26n-obb.pt、yolo26s-obb.pt、yolo26m-obb.pt、yolo26l-obb.pt 文件名中的“n”、“s”、“m”、“l”通常对应不同规模与复杂度的模型,分别代表nano、small、medium、large版本。不同规模的模型适用于多样的性能需求和硬件环境,用户可根据自身项目的实时性要求与计算资源灵活选择。

2026-02-08

基于NCNN+Android上部署YOLOv13目标检测算法(安卓APP)

本资源将YOLOv13集成ncnn-android(GitHub开源项目)中,目前YOLOv13算法仅支持检测等,功能支持本机前后双摄像头调取,Release发版,可直接安装到手机,仅支持安卓。

2026-02-03

YOLO13-main pt预训练权重(含检测)

从GitHub下载YOLO13模型权重文件时,由于网络原因,常常遇到下载速度缓慢甚至中途断开,导致需要反复重试的问题。为方便大家快速获取和使用,我已将下载好的文件进行整理打包,并在此分享,以提高下载效率。 压缩包内文件列表包括:yolo13n.pt、yolo13s.pt、yolo13l.pt、 文件名中的“n”、“s”、“l”、“l”通常对应不同规模与复杂度的模型,分别代表nano、small、large版本。不同规模的模型适用于多样的性能需求和硬件环境,用户可根据自身项目的实时性要求与计算资源灵活选择。

2026-02-03

YOLO12 v1.0 pt预训练权重(含检测、分割、分类)

从GitHub下载YOLO12模型权重文件时,由于网络原因,常常遇到下载速度缓慢甚至中途断开,导致需要反复重试的问题。为方便大家快速获取和使用,我已将下载好的文件进行整理打包,并在此分享,以提高下载效率。 压缩包内文件列表包括:yolo12n.pt、yolo12s.pt、yolo12n-turbo.pt、yolo12s-turbo.pt、yolo12n-seg.pt、yolo12s-seg.pt、yolo12n-cls.pt、yolo12s-cls.pt 文件名中的“n”、“s”、“m”、“l”通常对应不同规模与复杂度的模型,分别代表nano、small、medium、large版本。不同规模的模型适用于多样的性能需求和硬件环境,用户可根据自身项目的实时性要求与计算资源灵活选择。

2026-01-26

基于NCNN+Android上部署YOLOv12目标检测算法(安卓APP)

本资源将YOLO12集成ncnn-android(GitHub开源项目)中,目前YOLO12算法支持检测、分割等,功能支持本机前后双摄像头调取,Release发版,可直接安装到手机,仅支持安卓。

2026-01-25

YOLOv26+v8.4.0版本+姿态估计COCO模型+预训练权重文件

从GitHub下载YOLOv26模型权重文件时,由于网络原因,常常遇到下载速度缓慢甚至中途断开,导致需要反复重试的问题。为方便大家快速获取和使用,我已将下载好的文件进行整理打包,并在此分享,以提高下载效率。 压缩包内文件列表包括:yolo26n.pt、yolo26s.pt、yolo26m.pt、yolo26l.pt 文件名中的“n”、“s”、“m”、“l”通常对应不同规模与复杂度的模型,分别代表nano、small、medium、large版本。不同规模的模型适用于多样的性能需求和硬件环境,用户可根据自身项目的实时性要求与计算资源灵活选择。

2026-01-19

YOLOv26+v8.4.0版本+分割COCO模型+预训练权重文件

从GitHub下载YOLOv26模型权重文件时,由于网络原因,常常遇到下载速度缓慢甚至中途断开,导致需要反复重试的问题。为方便大家快速获取和使用,我已将下载好的文件进行整理打包,并在此分享,以提高下载效率。 压缩包内文件列表包括:yolo26n.pt、yolo26s.pt、yolo26m.pt、yolo26l.pt 文件名中的“n”、“s”、“m”、“l”通常对应不同规模与复杂度的模型,分别代表nano、small、medium、large版本。不同规模的模型适用于多样的性能需求和硬件环境,用户可根据自身项目的实时性要求与计算资源灵活选择。

2026-01-19

YOLOv26+v8.4.0版本+检测COCO模型+预训练权重文件

从GitHub下载YOLOv26模型权重文件时,由于网络原因,常常遇到下载速度缓慢甚至中途断开,导致需要反复重试的问题。为方便大家快速获取和使用,我已将下载好的文件进行整理打包,并在此分享,以提高下载效率。 压缩包内文件列表包括:yolo26n.pt、yolo26s.pt、yolo26m.pt、yolo26l.pt 文件名中的“n”、“s”、“m”、“l”通常对应不同规模与复杂度的模型,分别代表nano、small、medium、large版本。不同规模的模型适用于多样的性能需求和硬件环境,用户可根据自身项目的实时性要求与计算资源灵活选择。

2026-01-19

游戏开发-优化模型-电玩城套件-场景搭建

一个完整的现代电玩城室内三维模型,包含经典及热门街机、票务兑换区、休息座椅、照明灯具等典型设施。模型为低聚风格,已合理分组并包含基础材质贴图,可直接用于游戏开发、虚拟漫游、影视预览或效果图制作

2026-01-18

明厨亮灶高质量数据集,YOLO格式

数据集格式为YOLO,涵盖多种检测对象,包括老鼠、蟑螂、发网、厨师服、厨师帽、口罩检测以及垃圾桶检测等,同时还包括吸烟、玩手机等行为检测。数据集已精心划分为训练集(35953张图片)、验证集(5382张图片)和测试集(3753张图片)详情+ nihaoxdyn(有偿数据,辛苦费)。 具体识别标签如下,共14个类别: cockroach(蟑螂)、hairnet(发网)、no_gloves(未戴手套)、no_hat(未戴帽子)、rat(老鼠)、with_mask(戴口罩)、without_mask(未戴口罩)、smoke(吸烟)、phone(玩手机)、overflow(溢出)、garbage(垃圾)、garbage_bin(垃圾桶)、chef_uniform(厨师服)、chef_hat(厨师帽)。

2026-01-12

金币推推推 - Cocos Creator 游戏项目,亲测可运行

此项目旨在为开发者提供一个完整的推金币游戏模板,便于快速上手和二次开发。推金币游戏作为休闲益智类游戏中的一种,深受玩家喜爱,通过简单的操作,让金币落入目标区域,获取分数或奖励。本游戏实现了基础的游戏逻辑、动画效果及基本用户界面,是学习Cocos Creator游戏开发、了解游戏逻辑设计的优质资源。

2026-01-10

安卓APP+端侧推理引擎框架NCNN+支持云端数据流(源码)

本工程在ncnn-android-yolov8(GitHub开源项目)基础上进行了部分功能的封装,算法支持检测、分割、跟踪、人链、关键点等,功能支持本地图片、视频、本机摄像头调取以及局域网相机RTSP流获取。可搭配https://blog.csdn.net/weixin_45791151/article/details/155877139?spm=1011.2124.3001.6209博客观看,主要从环境搭建、三方库编译、目标检测量化编译、工程软件关键代码等多方面去讲解。

2026-01-07

安卓推理APP(多种模型,支持云端数据)

本工程在ncnn-android-yolov8(GitHub开源项目)基础上进行了部分功能的封装,算法支持检测、分割、跟踪、人链、关键点等,功能支持本地图片、视频、本机摄像头调取以及局域网相机RTSP流获取。Release发版,可直接安装到手机,仅支持安卓。

2026-01-07

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除