NVIDIA PyTorch Docker 镜像安装

nvcr.io/nvidia/pytorch:24.12-py3-igpu 是一个 NVIDIA 提供的 PyTorch Docker 镜像,其中包含了 PyTorch 以及与 NVIDIA GPU 相关的库,24.12 表示这个镜像的版本号, py3 表示python3版本,igpu表示集显。

步骤:

  1. 确保你已安装 Docker:

    • 如果你的系统上还没有安装 Docker,请先安装 Docker Desktop(适用于 macOS 和 Windows)或者 Docker Engine(适用于 Linux)。
    • 你可以从 Docker 官网下载并安装:https://www.docker.com/get-started
    • 安装完成后,运行 docker --version 确认 Docker 是否安装成功。
  2. 拉取 Docker 镜像:

    • 打开你的终端或命令提示符。

    • 使用 docker pull 命令拉取镜像:

      docker pull nvcr.io/nvidia/pytorch:24.12-py3-igpu
      
      • docker pull: 是 Docker 的拉取镜像命令。
      • nvcr.io/nvidia/pytorch:24.12-py3-igpu: 是要拉取的镜像的名称,这个镜像存储在 nvcr.io 的镜像仓库中。
    • Docker 会自动从镜像仓库下载镜像。这个过程可能会需要一些时间,取决于你的网络速度和镜像大小。

  3. 运行 Docker 镜像:

    • 拉取完成后,你可以使用 docker run 命令运行镜像:

      docker run --gpus all -it nvcr.io/nvidia/pytorch:24.12-py3-igpu /bin/bash
      
      • docker run: 是 Docker 的运行容器命令。
      • --gpus all: 指定使用所有的GPU资源,如果只想使用部分,可以更换为--gpus device=<gpu_id>
      • -it: 以交互式的方式运行容器,并且分配一个伪终端。
      • nvcr.io/nvidia/pytorch:24.12-py3-igpu: 指定要运行的镜像名称。
      • /bin/bash: 在容器中启动 bash shell。你可以使用其他命令来覆盖默认启动命令。
    • 如果想要使用指定的端口,需要增加 -p 参数:

      docker run -p 8888:8888 --gpus all -it nvcr.io/nvidia/pytorch:24.12-py3-igpu /bin/bash
      

      其中 8888:8888 表示将容器的8888端口映射到宿主机的8888端口,这样就能从宿主机访问容器中的服务。

    • 运行此命令后,你将进入容器的 bash shell。你可以在这里运行 PyTorch 代码。

    • --gpus all 参数指定使用所有可用的 GPU,如果你想使用特定的 GPU,可以例如使用 --gpus '"device=0,2"' 指定使用 0 和 2 号 GPU。

    • 如果需要挂载宿主机的目录到容器中,可以使用 -v 参数:

      docker run -v /path/in/host:/path/in/container --gpus all -it nvcr.io/nvidia/pytorch:24.12-py3-igpu /bin/bash
      

      其中 /path/in/host 是宿主机的文件路径, /path/in/container 是容器中的路径。

  4. 退出 Docker 容器:

    • 在容器的 bash shell 中,输入 exit 并按回车键即可退出容器。

更多常用命令:

  • 查看已下载的镜像:
    docker images
    
  • 查看正在运行的容器:
    docker ps
    
  • 查看所有容器 (包括已停止的容器):
    docker ps -a
    
  • 停止容器:
    docker stop <container_id>
    
  • 删除容器:
    docker rm <container_id>
    
  • 删除镜像:
    docker rmi <image_id>
    
你可以按照以下步骤来搭建一个GPU版本的PyTorch Docker镜像: 1. 首先,确保你的机器上已经安装NVIDIA驱动程序。可以使用以下命令来检查驱动程序的安装情况: ``` nvidia-smi ``` 2. 安装DockerNVIDIA Docker运行时。根据你的操作系统,可以按照官方文档的说明进行安装。 3. 创建一个新的Dockerfile,可以使用以下命令在你的项目目录中创建一个名为Dockerfile的文件: ``` touch Dockerfile ``` 4. 使用任何文本编辑器打开Dockerfile,并将以下内容添加到文件中: ```dockerfile # 指定基础镜像 FROM pytorch/pytorch:latest # 安装CUDA工具包 RUN apt-get update && apt-get install -y --no-install-recommends \ cuda-toolkit-11-0 \ && rm -rf /var/lib/apt/lists/* # 设置环境变量 ENV PATH /usr/local/nvidia/bin:${PATH} ENV LD_LIBRARY_PATH /usr/local/nvidia/lib:/usr/local/nvidia/lib64:${LD_LIBRARY_PATH} # 安装PyTorch和Torchvision RUN pip install torch==1.9.0+cu111 torchvision==0.10.0+cu111 -f https://download.pytorch.org/whl/torch_stable.html # 设置工作目录 WORKDIR /app # 复制项目文件到镜像中 COPY . /app # 安装项目依赖 RUN pip install -r requirements.txt # 设置启动命令 CMD ["python", "main.py"] ``` 请注意,上面的Dockerfile使用了pytorch/pytorch:latest作为基础镜像,并安装了CUDA工具包以支持GPU计算。你可以根据你的需求选择不同的基础镜像和CUDA版本。 5. 在同一个目录中创建一个名为requirements.txt的文件,并列出你项目所需的所有Python依赖包。 6. 确保你的项目文件(包括Dockerfile和requirements.txt)都在同一个目录中。 7. 打开终端,导航到包含Dockerfile和requirements.txt的目录,并执行以下命令来构建Docker镜像: ``` docker build -t my_pytorch_image . ``` 这将使用Dockerfile中的指令构建一个名为my_pytorch_image的镜像。确保在命令末尾有一个点,表示Dockerfile所在的当前目录。 8. 构建完成后,你可以使用以下命令来运行一个容器并使用GPU: ``` docker run --gpus all -it my_pytorch_image ``` 这将创建一个新的容器并进入交互模式,你可以在其中运行你的PyTorch代码,并利用GPU进行加速。 希望这些步骤能帮助你搭建一个GPU版本的PyTorch Docker镜像!如果有任何问题,请随时提问。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

梦星辰.

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值