给定N个闭区间[ai,bi],请你在数轴上选择尽量少的点,使得每个区间内至少包含一个选出的点。
输出选择的点的最小数量。
位于区间端点上的点也算作区间内。
输入格式
第一行包含整数N,表示区间数。
接下来N行,每行包含两个整数ai,bi,表示一个区间的两个端点。
输出格式
输出一个整数,表示所需的点的最小数量。
数据范围
1≤N≤105,
−109≤ai≤bi≤109
输入样例:
3
-1 1
2 4
3 5
输出样例:
2
思路:
1.将每个区间按照右端点从小到大进行排序
2.从前往后枚举区间,end值初始化为无穷小
·如果本次区间不能覆盖掉上次区间的右端点, ed < range[i].l
说明需要选择一个新的点, res ++ ; ed = range[i].r;
·如果本次区间可以覆盖掉上次区间的右端点,则进行下一轮循环
#include <iostream>
#include <algorithm>
using namespace std;
const int N = 100010;
int n;
struct Range
{
int l, r;
bool operator< (const Range &W)const
{
return r < W.r;
}
}range[N];
int main()
{
scanf("%d", &n);
for (int i = 0; i < n; i ++ ) scanf("%d%d", &range[i].l, &range[i].r);
sort(range, range + n);
int res = 0, ed = -2e9;
for (int i = 0; i < n; i ++ )
if (ed < range[i].l)
{
res ++ ;
ed = range[i].r;
}
printf("%d\n", res);
return 0;
}