dtype = torch.float32到底有什么用

文章讨论了在PyTorch中指定dtype=torch.float32的原因,特别是在进行矩阵运算如torch.mv时,确保数据类型一致以避免RuntimeError。解决方案包括在定义张量时直接设置为float32或使用.xfloat()方法转换数据类型。
摘要由CSDN通过智能技术生成

dtype = torch.float32到底有什么用

解决:RuntimeError: expected scalar type Long but found Float

先看一个例子

请添加图片描述
要计算 z = x0 + w1x1 + w2x2
其中w = [-0.2,0.15,0.15]

  • 于是你开始尝试
    在这里插入图片描述
  • 其中torch.mv用于矩阵*向量
    此时你发现他需要你提供float格式的数据
    你查看发现生成的x默认为int64,也就是说torch只支持同样的数据格式之间的计算,
    请添加图片描述
    此时把x定义的时候定义为float32就行了

定义torch.tensor时定义为float32

请添加图片描述

当然也可以x.float转换格式请添加图片描述

使用torch.Torch()大写T可以无脑生成float32(不推荐使用,太死版了)

请添加图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

kaggle竞赛指南

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值