n皇后问题---输出所有符合要求的棋盘状态

Acwing 843题:

n−皇后问题是指将 nn 个皇后放在 n×n 的国际象棋棋盘上,使得皇后不能相互攻击到,即任意两个皇后都不能处于同一行、同一列或同一斜线上。

现在给定整数 n,请你输出所有的满足条件的棋子摆法。

输入格式

共一行,包含整数 n。

输出格式

每个解决方案占 n 行,每行输出一个长度为 n 的字符串,用来表示完整的棋盘状态。

其中 . 表示某一个位置的方格状态为空,Q 表示某一个位置的方格上摆着皇后。

每个方案输出完成后,输出一个空行。

注意:行末不能有多余空格。

输出方案的顺序任意,只要不重复且没有遗漏即可。

数据范围

1≤n≤9

输入样例:

4

输出样例:

.Q..
...Q
Q...
..Q.

..Q.
Q...
...Q
.Q..

 

题解:

首先这道题一看,就是非常典型的深度优先搜索,我一开始被题目要求吓到了,因为要输出棋盘状态,但其实也没那么可怕,输出状态,无非就是多开一个数组保存棋盘状态而已,在发现遍历到树的叶子结点的时候,输出状态就行了。

但还有一个问题,那就是什么情况下,才能继续向下深搜呢?我们看一下题意,n皇后满足任意两个皇后都不能处于同一行、同一列或同一斜线上,那么我们每次搜索一个位置的时候,就检查该位置所在的行、列、对角线、反对角线上有没有皇后,如果没有,就可以在该位置上放置皇后。然后进入下一层进行搜索。

那么问题又来了,如何判断每个位置所在的行、列、对角线、反对角线上有没有皇后呢?很简单,开几个布尔类型的数组,分别表示每个行、列、对角线、反对角线上有没有皇后。

但是需要开四个数组吗?我们知道,深度优先搜索函数中,一般至少会有一个参数,用来表示搜索到哪一层,这道题也一样。所以最多只用开3个布尔类型的数组就可以了。我首先想到的是定一个参数表示搜索到棋盘的哪一行,那可不可以再进一步,再多定一个参数记录搜索到棋盘的哪一列?这样遍历的位置就能够确定了。

用两个参数是可以的,但是就存在一个问题,如果递归函数中定两个参数a,b,分别表示目前搜索到的行、列的话,如何结束递归过程?是以a==n && b==n结束吗?如果是这样,那没有搜索到最后一行之前,每一行的结尾如何继续递归呢?可能每一行的结尾就继续dfs(a+1, 0)吧。这样做是可以的,但需要if语句判断情况,分类讨论,其实如果这样的话,不如就把参数定为一个,表示搜索到哪一行了。

我们可以看看这样怎么做,dfs(u)表示搜索到第u行,函数体中首先判断u是否等于n,如果是,说明前面的n行棋局都已经布好了,直接输出结果,然后返回函数就ok。如果不是,那么就说明还没有遍历完前面的行,继续循环用i枚举列数,这样行和列都确定了,就可以确定唯一的位置,接着判断这个位置所处的列、对角线、反对角线上有没有皇后(判断方法之前有提到)。最后代码如下:

#include<iostream>
using namespace std;
const int N=20;
int n;
bool col[N],dg[N],udg[N];
char g[N][N];
void dfs(int u){
    if(u==n){
        for(int i=0;i<n;i++){
            cout<<g[i]<<endl;
        }
        puts("");
    }
    for(int i=0;i<n;i++){
        if(!col[i] && !dg[u+i] && !udg[n-u+i]){
            col[i]=dg[u+i]=udg[n-u+i]=true;
            g[u][i]='Q';
            dfs(u+1);
            g[u][i]='.';
            col[i]=dg[u+i]=udg[n-u+i]=false;
        }
    }
}
int main()
{
    cin>>n;
    for(int i=0;i<n;i++)
        for(int j=0;j<n;j++)
            g[i][j] = '.';
            
    dfs(0);
    
    return 0;
}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值