题目
思路
要把一个数拆成四个数的平方和,如果是拆成一个数的平方,就是开平方,现在是四个数,那么这四个数必然都小于等于其平方根
a,b,c,d 都是<=
N
\sqrt{N}
N 每个数 0<= x <= 2200 左右
所以最多枚举2个数, 22002 , 三个数就 22003 = 8e9会超时 所以最多2个
- 最多只能枚举两个数
- 如果可以枚举三个数 d = N − a 2 − b 2 − c 2 \sqrt{N-a^{2}-b^{2}-c^{2}} N−a2−b2−c2
- 所以需要考虑使用空间来换取时间
- 本来需要枚举三重循环
for(a)
for(b)
for(c)
设置一个结构体,属性为:
- c 2 + d 2 c^{2}+d^{2} c2+d2
- c c c
- d d d
第一次枚举的时候,把
c
c
c和
d
d
d的所有符合条件的情况存下来
三个属性,比较的优先级逐渐降低
第二次枚举的时候,可以确保 a a a和 b b b的字典序是从小到大,因为整体是从小到大的结果,我们假设第一个枚举到的符合条件的情况,一定满足 a a a和 b b b是最小的,而 c c c和 d d d是比较大的,然后再去保存好的数组里查找即可。
代码
二分做法:
#include<iostream>
#include<algorithm>
using namespace std;
const int N=5500000; //可以开大一点,在空间要求内就行
struct Sum
{
int s,c,d;
bool operator < (const Sum &t)const //重载<运算符
{
if(s!=t.s) return s<t.s; //平方和的优先级最高
if(c!=t.c) return c<t.c; //为了确保答案中,c和d按字典序,所以c的优先级要比b高
if(d!=t.d) return d<t.d;
}
}Sum[N];
int n;
int main() //因为这里的复杂度不支持三重循环,必然会爆时间复杂度
{ //所以可以先两层循环,算出两个数的平方和的所有可能情况
scanf("%d",&n); //再去遍历另外的两个数的平方和,最后找到可以匹配的就行
int m=0; //属于是“用空间换时间”
for(int c=0;c*c<=n;c++) //把三层循环拆成两个两层循环,多花了一些空间
for(int d=c;c*c+d*d<=n;d++)
Sum[m++]={c*c+d*d,c,d}; //存到数组里
sort(Sum,Sum+m); //排序
for(int a=0;a*a<=n;a++)
for(int b=0;a*a+b*b<=n;b++)
{
int t=n-a*a-b*b;
int l=0,r=m-1;
while(l<r) //二分查找
{
int mid=l+r>>1;
if(Sum[mid].s>=t) r=mid;
else l=mid+1;
}
if(Sum[l].s==t)
{
printf("%d %d %d %d",a,b,Sum[l].c,Sum[l].d);
return 0;
}
}
return 0;
}
哈希表做法:
#pragma GCC optimize(1) //开O2优化,不开过不了
#pragma GCC optimize(2)
#pragma GCC optimize(3,"Ofast","inline")
#include<iostream>
#include<algorithm>
#include<unordered_map>
using namespace std;
typedef pair<int,int> PII;
#define x first
#define y second
int n;
unordered_map<int,PII> S;
int main() //因为这里的复杂度不支持三重循环,必然会爆时间复杂度
{ //所以可以先两层循环,算出两个数的平方和的所有可能情况
scanf("%d",&n); //再去遍历另外的两个数的平方和,最后找到可以匹配的就行
//属于是“用空间换时间”
//unordered_map<int,PII> S;
for(int c=0;c*c<=n;c++) //把三层循环拆成两个两层循环,多花了一些空间
for(int d=c;c*c+d*d<=n;d++)
{
int t=c*c+d*d;
if(!S.count(t)) //因为是从小到大枚举的,所以只需要记录最小的平方和就行
S[t]={c,d};
}
for(int a=0;a*a<=n;a++)
for(int b=a;a*a+b*b<=n;b++)
{
int t=n-a*a-b*b;
if(S.count(t))
{
printf("%d %d %d %d",a,b,S[t].x,S[t].y);
return 0;
}
}
return 0;
}