AcWing 1221. 四平方和 题解

题目

在这里插入图片描述
在这里插入图片描述


思路

要把一个数拆成四个数的平方和,如果是拆成一个数的平方,就是开平方,现在是四个数,那么这四个数必然都小于等于其平方根
a,b,c,d 都是<= N \sqrt{N} N 每个数 0<= x <= 2200 左右
所以最多枚举2个数, 22002 , 三个数就 22003 = 8e9会超时 所以最多2个

  1. 最多只能枚举两个数
  2. 如果可以枚举三个数 d = N − a 2 − b 2 − c 2 \sqrt{N-a^{2}-b^{2}-c^{2}} Na2b2c2
  3. 所以需要考虑使用空间来换取时间
  4. 本来需要枚举三重循环
for(a)
    for(b)
        for(c)

在这里插入图片描述
设置一个结构体,属性为:

  • c 2 + d 2 c^{2}+d^{2} c2+d2
  • c c c
  • d d d

第一次枚举的时候,把 c c c d d d的所有符合条件的情况存下来
三个属性,比较的优先级逐渐降低

第二次枚举的时候,可以确保 a a a b b b的字典序是从小到大,因为整体是从小到大的结果,我们假设第一个枚举到的符合条件的情况,一定满足 a a a b b b是最小的,而 c c c d d d是比较大的,然后再去保存好的数组里查找即可。


代码

二分做法:

#include<iostream>
#include<algorithm>
using namespace std;
const int N=5500000;  //可以开大一点,在空间要求内就行
struct Sum
{
    int s,c,d;
    bool operator < (const Sum &t)const  //重载<运算符
    {
        if(s!=t.s) return s<t.s;    //平方和的优先级最高
        if(c!=t.c) return c<t.c;    //为了确保答案中,c和d按字典序,所以c的优先级要比b高
        if(d!=t.d) return d<t.d;
    }
}Sum[N];
int n;
int main()  //因为这里的复杂度不支持三重循环,必然会爆时间复杂度
{           //所以可以先两层循环,算出两个数的平方和的所有可能情况
    scanf("%d",&n); //再去遍历另外的两个数的平方和,最后找到可以匹配的就行
    int m=0;             //属于是“用空间换时间”
    for(int c=0;c*c<=n;c++)               //把三层循环拆成两个两层循环,多花了一些空间
        for(int d=c;c*c+d*d<=n;d++)
            Sum[m++]={c*c+d*d,c,d};  //存到数组里
    sort(Sum,Sum+m);  //排序
    
    for(int a=0;a*a<=n;a++)
        for(int b=0;a*a+b*b<=n;b++)
        {
            int t=n-a*a-b*b;
            int l=0,r=m-1;
            while(l<r)         //二分查找
            {
                int mid=l+r>>1;
                if(Sum[mid].s>=t) r=mid;
                else l=mid+1;
            }
            if(Sum[l].s==t)
            {
                printf("%d %d %d %d",a,b,Sum[l].c,Sum[l].d);
                return 0;
            }
        }
    return 0;
}

哈希表做法:

#pragma GCC optimize(1)    //开O2优化,不开过不了
#pragma GCC optimize(2)
#pragma GCC optimize(3,"Ofast","inline")
#include<iostream>
#include<algorithm>
#include<unordered_map>
using namespace std;
typedef pair<int,int> PII;
#define x first
#define y second
int n;
unordered_map<int,PII> S;
int main()  //因为这里的复杂度不支持三重循环,必然会爆时间复杂度
{           //所以可以先两层循环,算出两个数的平方和的所有可能情况
    scanf("%d",&n); //再去遍历另外的两个数的平方和,最后找到可以匹配的就行
    //属于是“用空间换时间”
    //unordered_map<int,PII> S;
    for(int c=0;c*c<=n;c++)               //把三层循环拆成两个两层循环,多花了一些空间
        for(int d=c;c*c+d*d<=n;d++)
        {
            int t=c*c+d*d;
            if(!S.count(t))   //因为是从小到大枚举的,所以只需要记录最小的平方和就行
                S[t]={c,d};   
        }
    
    for(int a=0;a*a<=n;a++)
        for(int b=a;a*a+b*b<=n;b++)
        {
            int t=n-a*a-b*b;
            if(S.count(t))
            {
                printf("%d %d %d %d",a,b,S[t].x,S[t].y);
                return 0;
            }
        }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Alkali!

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值