离散数学复习二:空集、补集、德摩根定律、异或、广义交和广义并

本文探讨了集合论中的外延性原则及其在证明过程中的应用,包括如何证明集合之间的包含关系。此外,还介绍了证明思路,如S→P→Q形式的证明策略,以及涉及空集、补集、幂等律、吸收律、双重否定等概念。同时,讨论了集合相减转换为集合交、德摩根定律、交并运算的性质以及广义的交并运算。这些理论和技巧对于理解集合论和逻辑推理至关重要。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

集合关系证明的基本原则

外延性原则
证明两个集合互相包含

当有基本结论时,就可以直接用而不需要全用外延性原则


对S − > -> >P or Q形式的证明思路

  • 1:非P S 推出 Q
  • 2:非Q P 推出 P
  • 3:非P 非Q 推出矛盾
  • 4:利用p析取非p这样的永真式进行分类讨论

关于空集

在这里插入图片描述


关于补集

在这里插入图片描述
在这里插入图片描述


幂等律、吸收律、双重否定等于肯定

在这里插入图片描述


集合相减转化为集合∩

在这里插入图片描述


德摩根定律

在这里插入图片描述在这里插入图片描述
在这里插入图片描述


交对减的分配

在这里插入图片描述


异或运算

在这里插入图片描述
在这里插入图片描述在这里插入图片描述
在这里插入图片描述
在这里插入图片描述


广义的交、并

在这里插入图片描述
在这里插入图片描述


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Alkali!

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值